IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i13p7279-d584702.html
   My bibliography  Save this article

Impact of the Wind Turbine on the Parameters of the Electricity Supply to an Agricultural Farm

Author

Listed:
  • Zbigniew Skibko

    (Faculty of Electrical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland)

  • Magdalena Tymińska

    (The Higher School of Agribusiness in Lomza, 18-402 Lomza, Poland)

  • Wacław Romaniuk

    (Department of Rural Technical Infrastructure Poland, Institute of Technology and Life Sciences, Branch in Warsaw, 02-532 Warsaw, Poland)

  • Andrzej Borusiewicz

    (The Higher School of Agribusiness in Lomza, 18-402 Lomza, Poland)

Abstract

Wind power plants are an increasingly common source of electricity located in rural areas. As a result of the high variability of wind power, and thus the generated power, these sources should be classified as unstable sources. In this paper, the authors attempted to determine the impact of wind turbine operation on the parameters of electricity supplied to farms located near the source. As a result of the conducted field tests, variability courses of the basic parameters describing the supply voltage were obtained. The influence of power plant variability on the values of voltage, frequency, and voltage distortion factor was determined. To estimate the capacity of the transmission lines, the reactive power produced in the power plant and its effect on the value of the power factor were determined. The conducted research and analysis showed that the wind power plant significantly influences voltage fluctuations in its immediate vicinity (the maximum value registered was close to 2%, while the value required by law was 2.5%). Although all the recorded values are within limits specified by the current regulations (e.g., the THD value is four times lower than the required value), wind turbines may cause incorrect operation of loads connected nearby. This applies mainly to cases where consumers sensitive to voltage fluctuations are installed in the direct vicinity of the power plant.

Suggested Citation

  • Zbigniew Skibko & Magdalena Tymińska & Wacław Romaniuk & Andrzej Borusiewicz, 2021. "Impact of the Wind Turbine on the Parameters of the Electricity Supply to an Agricultural Farm," Sustainability, MDPI, vol. 13(13), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7279-:d:584702
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/13/7279/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/13/7279/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hanan M. Taleb & Bassam Abu Hijleh, 2021. "Optimizing the Power Generation of a Wind Farm in Low Wind Speed Regions," Sustainability, MDPI, vol. 13(9), pages 1-26, May.
    2. Bokde, Neeraj Dhanraj & Tranberg, Bo & Andresen, Gorm Bruun, 2021. "Short-term CO2 emissions forecasting based on decomposition approaches and its impact on electricity market scheduling," Applied Energy, Elsevier, vol. 281(C).
    3. Bahram Shakerighadi & Esmaeil Ebrahimzadeh & Frede Blaabjerg & Claus Leth Bak, 2018. "Large-Signal Stability Modeling for the Grid-Connected VSC Based on the Lyapunov Method," Energies, MDPI, vol. 11(10), pages 1-16, September.
    4. Wang, Jianzhou & Song, Yiliao & Liu, Feng & Hou, Ru, 2016. "Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 960-981.
    5. Michał Bernard Pietrzak & Bartłomiej Igliński & Wojciech Kujawski & Paweł Iwański, 2021. "Energy Transition in Poland—Assessment of the Renewable Energy Sector," Energies, MDPI, vol. 14(8), pages 1-23, April.
    6. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.
    7. Neeraj Bokde & Bo Tranberg & Gorm Bruun Andresen, 2020. "A graphical approach to carbon-efficient spot market scheduling for Power-to-X applications," Papers 2009.03160, arXiv.org.
    8. Zhikun Luo & Zhifeng Sun & Fengli Ma & Yihan Qin & Shihao Ma, 2020. "Power Optimization for Wind Turbines Based on Stacking Model and Pitch Angle Adjustment," Energies, MDPI, vol. 13(16), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maciej Kuboń & Zbigniew Skibko & Sylwester Tabor & Urszula Malaga-Toboła & Andrzej Borusiewicz & Wacław Romaniuk & Janusz Zarajczyk & Pavel Neuberger, 2023. "Analysis of Voltage Distortions in the Power Grid Arising from Agricultural Biogas Plant Operation," Energies, MDPI, vol. 16(17), pages 1-21, August.
    2. Zbigniew Skibko & Grzegorz Hołdyński & Andrzej Borusiewicz, 2022. "Impact of Wind Power Plant Operation on Voltage Quality Parameters—Example from Poland," Energies, MDPI, vol. 15(15), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacek Filipkowski & Zbigniew Skibko & Andrzej Borusiewicz & Wacław Romaniuk & Łukasz Pisarek & Anna Milewska, 2024. "Changes in Farm Supply Voltage Caused by Switching Operations at a Wind Turbine," Energies, MDPI, vol. 17(22), pages 1-20, November.
    2. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    3. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    4. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    5. Benedikt Finnah, 2022. "Optimal bidding functions for renewable energies in sequential electricity markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 1-27, March.
    6. Liu, Hui & Duan, Zhu & Chen, Chao, 2020. "Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder," Applied Energy, Elsevier, vol. 280(C).
    7. Tian, Zhongda & Chen, Hao, 2021. "Multi-step short-term wind speed prediction based on integrated multi-model fusion," Applied Energy, Elsevier, vol. 298(C).
    8. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    9. Su, Xiang & Tan, Junlan, 2023. "Regional energy transition path and the role of government support and resource endowment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    10. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    11. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    12. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
    13. Ming-Fa Tsai & Chung-Shi Tseng & Bor-Yuh Lin, 2020. "Phase Voltage-Oriented Control of a PMSG Wind Generator for Unity Power Factor Correction," Energies, MDPI, vol. 13(21), pages 1-22, October.
    14. Eleonora Riva Sanseverino & Le Quyen Luu, 2022. "Critical Raw Materials and Supply Chain Disruption in the Energy Transition," Energies, MDPI, vol. 15(16), pages 1-5, August.
    15. Can Ding & Yiyuan Zhou & Qingchang Ding & Kaiming Li, 2022. "Integrated Carbon-Capture-Based Low-Carbon Economic Dispatch of Power Systems Based on EEMD-LSTM-SVR Wind Power Forecasting," Energies, MDPI, vol. 15(5), pages 1-27, February.
    16. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    17. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    18. Negri, Simone & Giani, Federico & Blasuttigh, Nicola & Massi Pavan, Alessandro & Mellit, Adel & Tironi, Enrico, 2022. "Combined model predictive control and ANN-based forecasters for jointly acting renewable self-consumers: An environmental and economical evaluation," Renewable Energy, Elsevier, vol. 198(C), pages 440-454.
    19. Wang, Chen & Zhang, Shenghui & Liao, Peng & Fu, Tonglin, 2022. "Wind speed forecasting based on hybrid model with model selection and wind energy conversion," Renewable Energy, Elsevier, vol. 196(C), pages 763-781.
    20. Ramesh Kumar Behara & Akshay Kumar Saha, 2022. "Artificial Intelligence Control System Applied in Smart Grid Integrated Doubly Fed Induction Generator-Based Wind Turbine: A Review," Energies, MDPI, vol. 15(17), pages 1-56, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7279-:d:584702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.