IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p6466-d570107.html
   My bibliography  Save this article

The Seismic Coat: A Sustainable and Integrated Approach to the Retrofit of Existing Buildings

Author

Listed:
  • Grazia Lombardo

    (Department of Civil Engineering and Architecture, University of Catania, 95125 Catania, Italy)

Abstract

Within the EU’s environmental policy, redevelopment strategies must be designed by adopting an integrated approach. This approach considers energy savings in buildings and seismic safety as driving forces of economic growth. The recent technological evolution experienced by the construction sector has aimed to define a new building element, the seismic coat. This term refers to a structural “skin” that improves both the seismic safety and the energy efficiency of existing buildings according to standards identified by current regulations. With this regard, research was started with the aim of defining a sustainable seismic coat consisting of dry-assembled panels of natural stone blocks that are prestressed with the use of steel reinforcements. The experimentation carried out on the panel so far has shown significant results as the test building improved in terms of energy savings, seismic safety, sustainability, functionality, and aesthetic quality. By taking a case study of a 1960s building as reference, this paper highlights the findings obtained by the feasibility study of the panel, with a special focus on its technical and construction aspects, and to facilitate its manufacture with the use of industrialized processes. Furthermore, this research provides the installation procedures for the panel components and all relevant details regarding the connections with the existing structure of the building.

Suggested Citation

  • Grazia Lombardo, 2021. "The Seismic Coat: A Sustainable and Integrated Approach to the Retrofit of Existing Buildings," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6466-:d:570107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/6466/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/6466/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesco Nocera & Alessandro Lo Faro & Vincenzo Costanzo & Chiara Raciti, 2018. "Daylight Performance of Classrooms in a Mediterranean School Heritage Building," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    2. Maria Rosa Trovato & Francesco Nocera & Salvatore Giuffrida, 2020. "Life-Cycle Assessment and Monetary Measurements for the Carbon Footprint Reduction of Public Buildings," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
    3. Maria-Mar Fernandez-Antolin & José Manuel del Río & Vincenzo Costanzo & Francesco Nocera & Roberto-Alonso Gonzalez-Lezcano, 2019. "Passive Design Strategies for Residential Buildings in Different Spanish Climate Zones," Sustainability, MDPI, vol. 11(18), pages 1-22, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michele La Noce & Alessandro Lo Faro & Gaetano Sciuto, 2021. "Clay-Based Products Sustainable Development: Some Applications," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    2. Giada Giuffrida & Maurizio Detommaso & Francesco Nocera & Rosa Caponetto, 2021. "Design Optimisation Strategies for Solid Rammed Earth Walls in Mediterranean Climates," Energies, MDPI, vol. 14(2), pages 1-23, January.
    3. Maria Rosa Trovato & Francesco Nocera & Salvatore Giuffrida, 2020. "Life-Cycle Assessment and Monetary Measurements for the Carbon Footprint Reduction of Public Buildings," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
    4. Alessandro Lo Faro & Alessia Miceli, 2021. "New Life for Disused Religious Heritage: A Sustainable Approach," Sustainability, MDPI, vol. 13(15), pages 1-24, July.
    5. Maria-Mar Fernandez-Antolin & José-Manuel del-Río & Roberto-Alonso Gonzalez-Lezcano, 2019. "Influence of Solar Reflectance and Renewable Energies on Residential Heating and Cooling Demand in Sustainable Architecture: A Case Study in Different Climate Zones in Spain Considering Their Urban Co," Sustainability, MDPI, vol. 11(23), pages 1-31, November.
    6. Francesco Nocera & Rosa Caponetto & Giada Giuffrida & Maurizio Detommaso, 2020. "Energetic Retrofit Strategies for Traditional Sicilian Wine Cellars: A Case Study," Energies, MDPI, vol. 13(12), pages 1-17, June.
    7. Stefania De Medici, 2021. "Italian Architectural Heritage and Photovoltaic Systems. Matching Style with Sustainability," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    8. Anna Życzyńska & Dariusz Majerek & Zbigniew Suchorab & Agnieszka Żelazna & Václav Kočí & Robert Černý, 2021. "Improving the Energy Performance of Public Buildings Equipped with Individual Gas Boilers Due to Thermal Retrofitting," Energies, MDPI, vol. 14(6), pages 1-19, March.
    9. Mustafa S. Al-Tekreeti & Salwa M. Beheiry & Vian Ahmed, 2022. "Commitment Indicators for Tracking Sustainable Design Decisions in Construction Projects," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    10. Rui Liang & Xichuan Zheng & Po-Hsun Wang & Jia Liang & Linhui Hu, 2023. "Research Progress of Carbon-Neutral Design for Buildings," Energies, MDPI, vol. 16(16), pages 1-50, August.
    11. Karim Mohamed Ragab & Mehmet Fatih Orhan & Kenan Saka & Yousef Zurigat, 2022. "A Study and Assessment of the Status of Energy Efficiency and Conservation at School Buildings," Sustainability, MDPI, vol. 14(17), pages 1-31, August.
    12. Linda Giresini & Claudia Casapulla & Pietro Croce, 2021. "Environmental and Economic Impact of Retrofitting Techniques to Prevent Out-of-Plane Failure Modes of Unreinforced Masonry Buildings," Sustainability, MDPI, vol. 13(20), pages 1-26, October.
    13. Sara Eriksson & Lovisa Waldenström & Max Tillberg & Magnus Österbring & Angela Sasic Kalagasidis, 2019. "Numerical Simulations and Empirical Data for the Evaluation of Daylight Factors in Existing Buildings in Sweden," Energies, MDPI, vol. 12(11), pages 1-24, June.
    14. Przemyslaw Tabaka & Justyna Wtorkiewicz, 2022. "Analysis of the Spectral Sensitivity of Luxmeters and Light Sensors of Smartphones in Terms of Their Influence on the Results of Illuminance Measurements—Example Cases," Energies, MDPI, vol. 15(16), pages 1-21, August.
    15. Rakhyun Kim & Myung-Kwan Lim & Seungjun Roh & Won-Jun Park, 2021. "Analysis of the Characteristics of Environmental Impacts According to the Cut-Off Criteria Applicable to the Streamlined Life Cycle Assessment (S-LCA) of Apartment Buildings in South Korea," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    16. Kosara Kujundzic & Slavica Stamatovic Vuckovic & Ana Radivojević, 2023. "Toward Regenerative Sustainability: A Passive Design Comfort Assessment Method of Indoor Environment," Sustainability, MDPI, vol. 15(1), pages 1-33, January.
    17. Maria-Mar Fernandez-Antolin & José-Manuel del-Río & Fernando del Ama Gonzalo & Roberto-Alonso Gonzalez-Lezcano, 2020. "The Relationship between the Use of Building Performance Simulation Tools by Recent Graduate Architects and the Deficiencies in Architectural Education," Energies, MDPI, vol. 13(5), pages 1-20, March.
    18. Matteo Vitale & María del Mar Barbero-Barrera & Santi Maria Cascone, 2021. "Thermal, Physical and Mechanical Performance of Orange Peel Boards: A New Recycled Material for Building Application," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    19. Helena Monteiro & Fausto Freire & John E. Fernández, 2020. "Life-Cycle Assessment of Alternative Envelope Construction for a New House in South-Western Europe: Embodied and Operational Magnitude," Energies, MDPI, vol. 13(16), pages 1-20, August.
    20. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6466-:d:570107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.