IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p6330-d567932.html
   My bibliography  Save this article

Greenhouse Gas Emissions of Stationary Battery Installations in Two Renewable Energy Projects

Author

Listed:
  • Johanna Pucker-Singer

    (Joanneum Research Forschungsgesellschaft mbH, LIFE—Institute for Climate, Energy and Society, Waagner-Biro Straße 100, 8020 Graz, Austria)

  • Christian Aichberger

    (Joanneum Research Forschungsgesellschaft mbH, LIFE—Institute for Climate, Energy and Society, Waagner-Biro Straße 100, 8020 Graz, Austria)

  • Jernej Zupančič

    (Laboratory of Energy Policy, Faculty of Electrical Engineering, Univerza v Ljubljani, Tržaška Cesta 25, SI-1000 Ljubljana, Slovenia)

  • Camilla Neumann

    (Joanneum Research Forschungsgesellschaft mbH, LIFE—Institute for Climate, Energy and Society, Waagner-Biro Straße 100, 8020 Graz, Austria)

  • David Neil Bird

    (Joanneum Research Forschungsgesellschaft mbH, LIFE—Institute for Climate, Energy and Society, Waagner-Biro Straße 100, 8020 Graz, Austria)

  • Gerfried Jungmeier

    (Joanneum Research Forschungsgesellschaft mbH, LIFE—Institute for Climate, Energy and Society, Waagner-Biro Straße 100, 8020 Graz, Austria)

  • Andrej Gubina

    (Laboratory of Energy Policy, Faculty of Electrical Engineering, Univerza v Ljubljani, Tržaška Cesta 25, SI-1000 Ljubljana, Slovenia)

  • Andreas Tuerk

    (Joanneum Research Forschungsgesellschaft mbH, LIFE—Institute for Climate, Energy and Society, Waagner-Biro Straße 100, 8020 Graz, Austria)

Abstract

The goal to decrease greenhouse gas (GHG) emissions is spurring interest in renewable energy systems from time-varying sources (e.g., photovoltaics, wind) and these can require batteries to help load balancing. However, the batteries themselves add additional GHG emissions to the electricity system in all its life cycle phases. This article begins by investigating the GHG emissions for the manufacturing of two stationary lithium-ion batteries, comparing production in Europe, US and China. Next, we analyze how the installation and operation of these batteries change the GHG emissions of the electricity supply in two pilot sites. Life cycle assessment is used for GHG emissions calculation. The regional comparison on GHG emissions of battery manufacturing shows that primary aluminum, cathode paste and battery cell production are the principal components of the GHG emissions of battery manufacturing. Regional variations are linked mainly to high grid electricity demand and regional changes in the electricity mixes, resulting in base values of 77 kg CO 2 -eq/kWh to 153 kg CO 2 -eq/kWh battery capacity. The assessment of two pilot sites shows that the implementation of batteries can lead to GHG emission savings of up to 77%, if their operation enables an increase in renewable energy sources in the electricity system.

Suggested Citation

  • Johanna Pucker-Singer & Christian Aichberger & Jernej Zupančič & Camilla Neumann & David Neil Bird & Gerfried Jungmeier & Andrej Gubina & Andreas Tuerk, 2021. "Greenhouse Gas Emissions of Stationary Battery Installations in Two Renewable Energy Projects," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6330-:d:567932
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/6330/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/6330/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frate, Guido Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2021. "Energy storage for grid-scale applications: Technology review and economic feasibility analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1754-1772.
    2. Christian Aichberger & Gerfried Jungmeier, 2020. "Environmental Life Cycle Impacts of Automotive Batteries Based on a Literature Review," Energies, MDPI, vol. 13(23), pages 1-27, December.
    3. Jarod C. Kelly & Qiang Dai & Michael Wang, 2020. "Globally regional life cycle analysis of automotive lithium-ion nickel manganese cobalt batteries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(3), pages 371-396, March.
    4. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    5. Vandepaer, Laurent & Cloutier, Julie & Amor, Ben, 2017. "Environmental impacts of Lithium Metal Polymer and Lithium-ion stationary batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 46-60.
    6. Bullich-Massagué, Eduard & Cifuentes-García, Francisco-Javier & Glenny-Crende, Ignacio & Cheah-Mañé, Marc & Aragüés-Peñalba, Mònica & Díaz-González, Francisco & Gomis-Bellmunt, Oriol, 2020. "A review of energy storage technologies for large scale photovoltaic power plants," Applied Energy, Elsevier, vol. 274(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vilppu Eloranta & Aki Grönman & Aleksandra Woszczek, 2021. "Case Study and Feasibility Analysis of Multi-Objective Life Cycle Energy System Optimization in a Nordic Campus Building," Energies, MDPI, vol. 14(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Aichberger & Gerfried Jungmeier, 2020. "Environmental Life Cycle Impacts of Automotive Batteries Based on a Literature Review," Energies, MDPI, vol. 13(23), pages 1-27, December.
    2. Kebede, Abraham Alem & Kalogiannis, Theodoros & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Zhao, Chunyang & Andersen, Peter Bach & Træholt, Chresten & Hashemi, Seyedmostafa, 2023. "Grid-connected battery energy storage system: a review on application and integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Guandalini, Giulio & Campanari, Stefano & Romano, Matteo C., 2015. "Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment," Applied Energy, Elsevier, vol. 147(C), pages 117-130.
    5. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    6. Andreas von Döllen & YoungSeok Hwang & Stephan Schlüter, 2021. "The Future Is Colorful—An Analysis of the CO 2 Bow Wave and Why Green Hydrogen Cannot Do It Alone," Energies, MDPI, vol. 14(18), pages 1-20, September.
    7. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Integrating power systems for remote island energy supply: Lessons from Mykines, Faroe Islands," Renewable Energy, Elsevier, vol. 85(C), pages 642-648.
    8. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    9. Nawaz Edoo & Robert T. F. Ah King, 2021. "Techno-Economic Analysis of Utility-Scale Solar Photovoltaic Plus Battery Power Plant," Energies, MDPI, vol. 14(23), pages 1-22, December.
    10. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    11. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    12. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    13. Angel L. Cedeño & Reinier López Ahuar & José Rojas & Gonzalo Carvajal & César Silva & Juan C. Agüero, 2022. "Model Predictive Control for Photovoltaic Plants with Non-Ideal Energy Storage Using Mixed Integer Linear Programming," Energies, MDPI, vol. 15(17), pages 1-21, September.
    14. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    15. Angela Malara & Fabiola Pantò & Saveria Santangelo & Pier Luigi Antonucci & Michele Fiore & Gianluca Longoni & Riccardo Ruffo & Patrizia Frontera, 2021. "Comparative life cycle assessment of Fe2O3-based fibers as anode materials for sodium-ion batteries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6786-6799, May.
    16. Li, Yi & Yu, Hao & Tang, Dong & Li, Yi & Zhang, Guijin & Liu, Yaning, 2022. "A comparison of compressed carbon dioxide energy storage and compressed air energy storage in aquifers using numerical methods," Renewable Energy, Elsevier, vol. 187(C), pages 1130-1153.
    17. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.
    18. Shen, Boyang & Chen, Yu & Li, Chuanyue & Wang, Sheng & Chen, Xiaoyuan, 2021. "Superconducting fault current limiter (SFCL): Experiment and the simulation from finite-element method (FEM) to power/energy system software," Energy, Elsevier, vol. 234(C).
    19. Qin, Chao (Chris) & Loth, Eric, 2021. "Isothermal compressed wind energy storage using abandoned oil/gas wells or coal mines," Applied Energy, Elsevier, vol. 292(C).
    20. Jiang, W. & Wang, Y.L. & Zhang, D. & Xie, Y.H., 2020. "Numerical investigation into the energy extraction characteristics of 3D self-induced oscillating foil," Renewable Energy, Elsevier, vol. 148(C), pages 60-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6330-:d:567932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.