IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v67y2017icp324-340.html
   My bibliography  Save this article

Developing an Iranian green building assessment tool using decision making methods and geographical information system: Case study in Mashhad city

Author

Listed:
  • Shad, Rouzbeh
  • Khorrami, Mohammad
  • Ghaemi, Marjan

Abstract

Regarding the sustainable schemes, green building may be considered as an alternative for managing the energy use in developing countries such as Iran. Investigating green factors in the other systems, the aim of the present study was to propose a new set of comprehensive factors suits assessing green buildings and to evaluate them in the Iranian context to contribute a new aggregated rating tool for offices. Therefore, 8 major and 61 minor stakeholders were defined to cover all required criteria respecting previous studies, expert opinions and questionnaire forms. The defined criteria were weighted using multi criteria decision methods consisting of analytical hierarchy process, weighted harmonic mean and Shannon’s entropy. Then, Iranian Green Building assessment Tool (IGBT), consisting five certification levels, was developed based on weighted factors to improve environmental, social and economic aspects in the construction process. After that, aggregating IGBT, Geographical Information System (GIS) and multi-criteria decision methods, the practical application of the proposed tool was implemented on 48 offices through a case study in the municipality of Mashhad, Iran. For this purpose, a spatial database of 612 land uses was prepared to determine certification levels of the office buildings in the study area. The assessment procedure, applied in GIS, demonstrated five certified office buildings. Results of designing IGBT showed that the energy efficiency and the water efficiency, with the total score of 39%, are the most significant factors for assessing green office buildings with respect to the vital circumstances of energy and water conservation. Also, comparing performance sensitivity to the five representative green building rating systems confirmed the reliability of the suggested tool based on measuring the criteria deviations. The outcomes provide a valuable reference to the policy makers in Iran and also could be a considerable suggestion to the future studies.

Suggested Citation

  • Shad, Rouzbeh & Khorrami, Mohammad & Ghaemi, Marjan, 2017. "Developing an Iranian green building assessment tool using decision making methods and geographical information system: Case study in Mashhad city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 324-340.
  • Handle: RePEc:eee:rensus:v:67:y:2017:i:c:p:324-340
    DOI: 10.1016/j.rser.2016.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116304956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roh, Seungjun & Tae, Sungho & Shin, Sungwoo, 2014. "Development of building materials embodied greenhouse gases assessment criteria and system (BEGAS) in the newly revised Korea Green Building Certification System (G-SEED)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 410-421.
    2. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    3. Buyle, Matthias & Braet, Johan & Audenaert, Amaryllis, 2013. "Life cycle assessment in the construction sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 379-388.
    4. Harish, V.S.K.V. & Kumar, Arun, 2016. "A review on modeling and simulation of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1272-1292.
    5. Roh, Seungjun & Tae, Sungho & Suk, Sung Joon & Ford, George & Shin, Sungwoo, 2016. "Development of a building life cycle carbon emissions assessment program (BEGAS 2.0) for Korea׳s green building index certification system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 954-965.
    6. Salvalai, Graziano & Masera, Gabriele & Sesana, Marta Maria, 2015. "Italian local codes for energy efficiency of buildings: Theoretical definition and experimental application to a residential case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1245-1259.
    7. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    8. Lee, Kanghee & Tae, Sungho & Shin, Sungwoo, 2009. "Development of a Life Cycle Assessment Program for building (SUSB-LCA) in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1994-2002, October.
    9. Ihara, Tomohiko & Kikegawa, Yukihiro & Asahi, Kazutake & Genchi, Yutaka & Kondo, Hiroaki, 2008. "Changes in year-round air temperature and annual energy consumption in office building areas by urban heat-island countermeasures and energy-saving measures," Applied Energy, Elsevier, vol. 85(1), pages 12-25, January.
    10. Chen, Xi & Yang, Hongxing & Lu, Lin, 2015. "A comprehensive review on passive design approaches in green building rating tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1425-1436.
    11. Hosseini, Seyed Ehsan & Andwari, Amin Mahmoudzadeh & Wahid, Mazlan Abdul & Bagheri, Ghobad, 2013. "A review on green energy potentials in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 533-545.
    12. Karteris, Marinos & Theodoridou, Ifigeneia & Mallinis, Giorgos & Tsiros, Emmanouel & Karteris, Apostolos, 2016. "Towards a green sustainable strategy for Mediterranean cities: Assessing the benefits of large-scale green roofs implementation in Thessaloniki, Northern Greece, using environmental modelling, GIS and," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 510-525.
    13. Fadai, Dawud & Esfandabadi, Zahra Shams & Abbasi, Azadeh, 2011. "Analyzing the causes of non-development of renewable energy-related industries in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2690-2695, August.
    14. Zuo, Jian & Zhao, Zhen-Yu, 2014. "Green building research–current status and future agenda: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 271-281.
    15. Charabi, Yassine & Gastli, Adel, 2011. "PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation," Renewable Energy, Elsevier, vol. 36(9), pages 2554-2561.
    16. Bhavik Bakshi & Mitchell J. Small, 2011. "Incorporating Ecosystem Services Into Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 15(4), pages 477-478, August.
    17. GhaffarianHoseini, AmirHosein & Dahlan, Nur Dalilah & Berardi, Umberto & GhaffarianHoseini, Ali & Makaremi, Nastaran & GhaffarianHoseini, Mahdiar, 2013. "Sustainable energy performances of green buildings: A review of current theories, implementations and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 1-17.
    18. Kinoshita, Tsuguki & Inoue, Keisuke & Iwao, Koki & Kagemoto, Hiroshi & Yamagata, Yoshiki, 2009. "A spatial evaluation of forest biomass usage using GIS," Applied Energy, Elsevier, vol. 86(1), pages 1-8, January.
    19. Hamzeh, Yahya & Ashori, Alireza & Mirzaei, Babak & Abdulkhani, Ali & Molaei, Masoumeh, 2011. "Current and potential capabilities of biomass for green energy in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4934-4938.
    20. Vaidya, Omkarprasad S. & Kumar, Sushil, 2006. "Analytic hierarchy process: An overview of applications," European Journal of Operational Research, Elsevier, vol. 169(1), pages 1-29, February.
    21. Mohammadnejad, M. & Ghazvini, M. & Mahlia, T.M.I. & Andriyana, A., 2011. "A review on energy scenario and sustainable energy in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4652-4658.
    22. Zhang, Xiaoling & Shen, Liyin & Zhang, Lei, 2013. "Life cycle assessment of the air emissions during building construction process: A case study in Hong Kong," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 160-169.
    23. Yeo, In-Ae & Yoon, Seong-Hwan & Yee, Jurng-Jae, 2013. "Development of an Environment and energy Geographical Information System (E-GIS) construction model to support environmentally friendly urban planning," Applied Energy, Elsevier, vol. 104(C), pages 723-739.
    24. Koo, Choongwan & Hong, Taehoon, 2015. "Development of a dynamic operational rating system in energy performance certificates for existing buildings: Geostatistical approach and data-mining technique," Applied Energy, Elsevier, vol. 154(C), pages 254-270.
    25. Lin, Hung-Wen & Hong, Tianzhen, 2013. "On variations of space-heating energy use in office buildings," Applied Energy, Elsevier, vol. 111(C), pages 515-528.
    26. Ghobadian, Barat, 2012. "Liquid biofuels potential and outlook in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4379-4384.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gulzhanat Akhanova & Abid Nadeem & Jong R. Kim & Salman Azhar, 2019. "A Framework of Building Sustainability Assessment System for the Commercial Buildings in Kazakhstan," Sustainability, MDPI, vol. 11(17), pages 1-24, August.
    2. Ghani Albaali & Mohammed Shahateet & Khaled AL-Naif & Saud Altayeb & Abdul Ghafoor Saidi, 2020. "Examining the Economic Impact of Renewable Energy in Green Buildings: A Case Study of Jordan," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 31-35.
    3. Seungjun Roh & Sungho Tae & Rakhyun Kim, 2018. "Developing a Green Building Index (GBI) Certification System to Effectively Reduce Carbon Emissions in South Korea’s Building Industry," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
    4. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    5. Mohamed Abdel-Basset & Abduallah Gamal & Ripon K. Chakrabortty & Michael Ryan & Nissreen El-Saber, 2021. "A Comprehensive Framework for Evaluating Sustainable Green Building Indicators under an Uncertain Environment," Sustainability, MDPI, vol. 13(11), pages 1-25, June.
    6. Cristina Baglivo & Paolo Maria Congedo & Delia D’Agostino, 2018. "Multi-Objective Analysis for the Optimization of a High Performance Slab-on- Ground Floor in a Warm Climate," Energies, MDPI, vol. 11(11), pages 1-28, November.
    7. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    8. Chai-Lee Goi, 2017. "The impact of technological innovation on building a sustainable city," International Journal of Quality Innovation, Springer, vol. 3(1), pages 1-13, December.
    9. Kamaruzzaman, Syahrul Nizam & Lou, Eric Choen Weng & Wong, Phui Fung & Edwards, Rodger & Hamzah, Noraini & Ghani, Mohd Khairolden, 2019. "Development of a non-domestic building refurbishment scheme for Malaysia: A Delphi approach," Energy, Elsevier, vol. 167(C), pages 804-818.
    10. Qi-Gan Shao & James J. H. Liou & Sung-Shun Weng & Yen-Ching Chuang, 2018. "Improving the Green Building Evaluation System in China Based on the DANP Method," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    11. Ferrari, S. & Zoghi, M. & Blázquez, T. & Dall’O’, G., 2022. "New Level(s) framework: Assessing the affinity between the main international Green Building Rating Systems and the european scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Lin, Sheng-Hau & Zhang, Hejie & Li, Jia-Hsuan & Ye, Cheng-Zhou & Hsieh, Jing-Chzi, 2022. "Evaluating smart office buildings from a sustainability perspective: A model of hybrid multi-attribute decision-making," Technology in Society, Elsevier, vol. 68(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Nayoon & Tae, Sungho & Gong, Yuri & Roh, Seungjun, 2017. "Integrated building life-cycle assessment model to support South Korea's green building certification system (G-SEED)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 43-50.
    2. Zuo, Jian & Pullen, Stephen & Rameezdeen, Raufdeen & Bennetts, Helen & Wang, Yuan & Mao, Guozhu & Zhou, Zhihua & Du, Huibin & Duan, Huabo, 2017. "Green building evaluation from a life-cycle perspective in Australia: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 358-368.
    3. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    4. Roh, Seungjun & Tae, Sungho, 2017. "An integrated assessment system for managing life cycle CO2 emissions of a building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 265-275.
    5. Morteza Aien & Omid Mahdavi, 2020. "On the Way of Policy Making to Reduce the Reliance of Fossil Fuels: Case Study of Iran," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    6. Khojasteh, Danial & Khojasteh, Davood & Kamali, Reza & Beyene, Asfaw & Iglesias, Gregorio, 2018. "Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2992-3005.
    7. Ling-Chin, J. & Heidrich, O. & Roskilly, A.P., 2016. "Life cycle assessment (LCA) – from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 352-378.
    8. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    9. Khishtandar, Soheila & Zandieh, Mostafa & Dorri, Behrouz, 2017. "A multi criteria decision making framework for sustainability assessment of bioenergy production technologies with hesitant fuzzy linguistic term sets: The case of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1130-1145.
    10. Hosseini, Seyed Ehsan & Andwari, Amin Mahmoudzadeh & Wahid, Mazlan Abdul & Bagheri, Ghobad, 2013. "A review on green energy potentials in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 533-545.
    11. Roh, Seungjun & Tae, Sungho & Shin, Sungwoo, 2014. "Development of building materials embodied greenhouse gases assessment criteria and system (BEGAS) in the newly revised Korea Green Building Certification System (G-SEED)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 410-421.
    12. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    13. Diana Carolina Gámez-García & José Manuel Gómez-Soberón & Ramón Corral-Higuera & Héctor Saldaña-Márquez & María Consolación Gómez-Soberón & Susana Paola Arredondo-Rea, 2018. "A Cradle to Handover Life Cycle Assessment of External Walls: Choice of Materials and Prognosis of Elements," Sustainability, MDPI, vol. 10(8), pages 1-24, August.
    14. Yaghoubi, Jafar & Yazdanpanah, Masoud & Komendantova, Nadejda, 2019. "Iranian agriculture advisors' perception and intention toward biofuel: Green way toward energy security, rural development and climate change mitigation," Renewable Energy, Elsevier, vol. 130(C), pages 452-459.
    15. Oryani, Bahareh & Koo, Yoonmo & Rezania, Shahabaldin & Shafiee, Afsaneh, 2021. "Barriers to renewable energy technologies penetration: Perspective in Iran," Renewable Energy, Elsevier, vol. 174(C), pages 971-983.
    16. Naeini, Mina Alavi & Zandieh, Mostafa & Najafi, Seyyed Esmaeil & Sajadi, Seyed Mojtaba, 2020. "Analyzing the development of the third-generation biodiesel production from microalgae by a novel hybrid decision-making method: The case of Iran," Energy, Elsevier, vol. 195(C).
    17. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    18. Martínez-Rocamora, A. & Solís-Guzmán, J. & Marrero, M., 2016. "LCA databases focused on construction materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 565-573.
    19. Sungwoo Lee & Sungho Tae & Hyungjae Jang & Chang U. Chae & Youngjin Bok, 2021. "Development of Building Information Modeling Template for Environmental Impact Assessment," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    20. Anand, Chirjiv Kaur & Amor, Ben, 2017. "Recent developments, future challenges and new research directions in LCA of buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 408-416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:67:y:2017:i:c:p:324-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.