IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p5990-d562489.html
   My bibliography  Save this article

Sustainable Human–Robot Collaboration Based on Human Intention Classification

Author

Listed:
  • Chiuhsiang Joe Lin

    (Department of Industrial Management, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd., Da’an District, Taipei City 106, Taiwan)

  • Rio Prasetyo Lukodono

    (Department of Industrial Management, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd., Da’an District, Taipei City 106, Taiwan)

Abstract

Sustainable manufacturing plays a role in ensuring products’ economic characteristics and reducing energy and resource consumption by improving the well-being of human workers and communities and maintaining safety. Using robots is one way for manufacturers to increase their sustainable manufacturing practices. Nevertheless, there are limitations to directly replacing humans with robots due to work characteristics and practical conditions. Collaboration between robots and humans should accommodate human capabilities while reducing loads and ineffective human motions to prevent human fatigue and maximize overall performance. Moreover, there is a need to establish early and fast communication between humans and machines in human–robot collaboration to know the status of the human in the activity and make immediate adjustments for maximum performance. This study used a deep learning algorithm to classify muscular signals of human motions with accuracy of 88%. It indicates that the signal could be used as information for the robot to determine the human motion’s intention during the initial stage of the entire motion. This approach can increase not only the communication and efficiency of human–robot collaboration but also reduce human fatigue by the early detection of human motion patterns. To enhance human well-being, it is suggested that a human–robot collaboration assembly line adopt similar technologies for a sustainable human–robot collaboration workplace.

Suggested Citation

  • Chiuhsiang Joe Lin & Rio Prasetyo Lukodono, 2021. "Sustainable Human–Robot Collaboration Based on Human Intention Classification," Sustainability, MDPI, vol. 13(11), pages 1-26, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:5990-:d:562489
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/5990/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/5990/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quan Liu & Zhihao Liu & Wenjun Xu & Quan Tang & Zude Zhou & Duc Truong Pham, 2019. "Human-robot collaboration in disassembly for sustainable manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 4027-4044, June.
    2. Jia, Shun & Yuan, Qinghe & Lv, Jingxiang & Liu, Ying & Ren, Dawei & Zhang, Zhongwei, 2017. "Therblig-embedded value stream mapping method for lean energy machining," Energy, Elsevier, vol. 138(C), pages 1081-1098.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhujun Zhang & Gaoliang Peng & Weitian Wang & Yi Chen, 2022. "Real-Time Human Fault Detection in Assembly Tasks, Based on Human Action Prediction Using a Spatio-Temporal Learning Model," Sustainability, MDPI, vol. 14(15), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shun Jia & Qingwen Yuan & Wei Cai & Qinghe Yuan & Conghu Liu & Jingxiang Lv & Zhongwei Zhang, 2018. "Establishment of an Improved Material-Drilling Power Model to Support Energy Management of Drilling Processes," Energies, MDPI, vol. 11(8), pages 1-16, August.
    2. Murat Gunduz & Ayman Fahmi Naser, 2017. "Cost Based Value Stream Mapping as a Sustainable Construction Tool for Underground Pipeline Construction Projects," Sustainability, MDPI, vol. 9(12), pages 1-20, November.
    3. Jia, Shun & Cai, Wei & Liu, Conghu & Zhang, Zhongwei & Bai, Shuowei & Wang, Qiuyan & Li, Shuoshuo & Hu, Luoke, 2021. "Energy modeling and visualization analysis method of drilling processes in the manufacturing industry," Energy, Elsevier, vol. 228(C).
    4. Shun Jia & Shang Wang & Jingxiang Lv & Wei Cai & Na Zhang & Zhongwei Zhang & Shuowei Bai, 2021. "Multi-Objective Optimization of CNC Turning Process Parameters Considering Transient-Steady State Energy Consumption," Sustainability, MDPI, vol. 13(24), pages 1-23, December.
    5. Shuai Wang & Jizhuang Hui & Bin Zhu & Ying Liu, 2022. "Adaptive Genetic Algorithm Based on Fuzzy Reasoning for the Multilevel Capacitated Lot-Sizing Problem with Energy Consumption in Synchronizer Production," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    6. Ardamanbir Singh Sidhu & Sehijpal Singh & Raman Kumar & Danil Yurievich Pimenov & Khaled Giasin, 2021. "Prioritizing Energy-Intensive Machining Operations and Gauging the Influence of Electric Parameters: An Industrial Case Study," Energies, MDPI, vol. 14(16), pages 1-39, August.
    7. Xiaoxia Chen & Mélanie Despeisse & Björn Johansson, 2020. "Environmental Sustainability of Digitalization in Manufacturing: A Review," Sustainability, MDPI, vol. 12(24), pages 1-31, December.
    8. Zhaohui Feng & Xinru Ding & Hua Zhang & Ying Liu & Wei Yan & Xiaoli Jiang, 2023. "An Energy Consumption Estimation Method for the Tool Setting Process in CNC Milling Based on the Modular Arrangement of Predetermined Time Standards," Energies, MDPI, vol. 16(20), pages 1-18, October.
    9. Keyan He & Huajie Hong & Renzhong Tang & Junyu Wei, 2020. "Analysis of Multi-Objective Optimization of Machining Allowance Distribution and Parameters for Energy Saving Strategy," Sustainability, MDPI, vol. 12(2), pages 1-32, January.
    10. Liu, Conghu & Cai, Wei & Dinolov, Ognyan & Zhang, Cuixia & Rao, Weizhen & Jia, Shun & Li, Li & Chan, Felix T.S., 2018. "Emergy based sustainability evaluation of remanufacturing machining systems," Energy, Elsevier, vol. 150(C), pages 670-680.
    11. Nailiang Li & Caihong Feng, 2021. "Research on Machining Workshop Batch Scheduling Incorporating the Completion Time and Non-Processing Energy Consumption Considering Product Structure," Energies, MDPI, vol. 14(19), pages 1-26, September.
    12. Wen, Xuanhao & Cao, Huajun & Hon, Bernard & Chen, Erheng & Li, Hongcheng, 2021. "Energy value mapping: A novel lean method to integrate energy efficiency into production management," Energy, Elsevier, vol. 217(C).
    13. Qi Lu & Qi Zhang & Guanghui Zhou, 2023. "Low-Carbon-Driven Product Life-Cycle Process Optimization Framework for Manufacturing Equipment," Sustainability, MDPI, vol. 15(9), pages 1-19, May.
    14. Cai, Wei & Liu, Fei & Dinolov, Ognyan & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2018. "Energy benchmarking rules in machining systems," Energy, Elsevier, vol. 142(C), pages 258-263.
    15. Feng, Yunting & Lai, Kee-hung & Zhu, Qinghua, 2022. "Green supply chain innovation: Emergence, adoption, and challenges," International Journal of Production Economics, Elsevier, vol. 248(C).
    16. Chen Peng & Tao Peng & Yi Zhang & Renzhong Tang & Luoke Hu, 2018. "Minimising Non-Processing Energy Consumption and Tardiness Fines in a Mixed-Flow Shop," Energies, MDPI, vol. 11(12), pages 1-15, December.
    17. Zhiqiang Yan & Jian Huang & Jingxiang Lv & Jizhuang Hui & Ying Liu & Hao Zhang & Enhuai Yin & Qingtao Liu, 2022. "A New Method of Predicting the Energy Consumption of Additive Manufacturing considering the Component Working State," Sustainability, MDPI, vol. 14(7), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:5990-:d:562489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.