IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p5915-d561282.html
   My bibliography  Save this article

Carbon Footprint of Landscape Tree Production in Korea

Author

Listed:
  • Hye-Mi Park

    (Department of Ecological Landscape Architecture Design, Kangwon National University, Chuncheon 24341, Korea)

  • Hyun-Kil Jo

    (Department of Ecological Landscape Architecture Design, Kangwon National University, Chuncheon 24341, Korea)

  • Jin-Young Kim

    (Department of Ecological Landscape Architecture Design, Kangwon National University, Chuncheon 24341, Korea)

Abstract

Landscape trees sequester carbon during their growth processes, but they emit carbon through production in nurseries, which may offset carbon uptake. This study quantified the carbon footprint of landscape tree production. After determining the scope of life cycle for landscape tree production, the energy and material used to produce trees of a target size were analyzed by conducting a field survey of 35 nurseries. This energy consumption and input material were converted to an estimate of carbon emitted using data on carbon emission coefficients. The net carbon uptake was 4.6, 12.2, and 24.3 kg/tree for trees with a DBH of 7, 10, and 13 cm, respectively. Thus, even though carbon is emitted during the production process, landscape trees can act as a source of carbon uptake in cities that have high energy consumption levels. This study broke new ground for quantifying the carbon footprint of landscape tree production by overcoming limitations of the past studies that only considered carbon uptake due to absence of data on energy consumption and difficulty of field survey. These study results are expected to provide information on the carbon footprint of landscape trees and to be useful in determining optimal greenhouse gas emissions reduction goal through urban greenspaces.

Suggested Citation

  • Hye-Mi Park & Hyun-Kil Jo & Jin-Young Kim, 2021. "Carbon Footprint of Landscape Tree Production in Korea," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:5915-:d:561282
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/5915/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/5915/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuanyuan Gong & Deyong Song, 2015. "Life Cycle Building Carbon Emissions Assessment and Driving Factors Decomposition Analysis Based on LMDI—A Case Study of Wuhan City in China," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
    2. Mariangela Diacono & Alessandro Persiani & Elena Testani & Francesco Montemurro & Corrado Ciaccia, 2019. "Recycling Agricultural Wastes and By-products in Organic Farming: Biofertilizer Production, Yield Performance and Carbon Footprint Analysis," Sustainability, MDPI, vol. 11(14), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Tran Thanh Liem & Yukihiro Tashiro & Pham Van Trong Tinh & Kenji Sakai, 2022. "Reduction in Greenhouse Gas Emission from Seedless Lime Cultivation Using Organic Fertilizer in a Province in Vietnam Mekong Delta Region," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
    2. Radu Lucian Pânzaru & Daniela Firoiu & George H. Ionescu & Andi Ciobanu & Dragoș Mihai Medelete & Ramona Pîrvu, 2023. "Organic Agriculture in the Context of 2030 Agenda Implementation in European Union Countries," Sustainability, MDPI, vol. 15(13), pages 1-31, July.
    3. Teresa Rodríguez-Espinosa & Jose Navarro-Pedreño & Ignacio Gómez Lucas & María Belén Almendro Candel & Ana Pérez Gimeno & Manuel Jordán Vidal & Iliana Papamichael & Antonis A. Zorpas, 2022. "Environmental Risk from Organic Residues," Sustainability, MDPI, vol. 15(1), pages 1-12, December.
    4. Nasser Al-Suhaibani & Mostafa Selim & Ali Alderfasi & Salah El-Hendawy, 2021. "Integrated Application of Composted Agricultural Wastes, Chemical Fertilizers and Biofertilizers as an Avenue to Promote Growth, Yield and Quality of Maize in an Arid Agro-Ecosystem," Sustainability, MDPI, vol. 13(13), pages 1-26, July.
    5. Duan, Haiyan & Chen, Siyan & Song, Junnian, 2022. "Characterizing regional building energy consumption under joint climatic and socioeconomic impacts," Energy, Elsevier, vol. 245(C).
    6. He Zhang & Jingyi Peng & Dahlia Yu & Lie You & Rui Wang, 2021. "Carbon Emission Governance Zones at the County Level to Promote Sustainable Development," Land, MDPI, vol. 10(2), pages 1-20, February.
    7. Efthymios Rodias & Eirini Aivazidou & Charisios Achillas & Dimitrios Aidonis & Dionysis Bochtis, 2020. "Water-Energy-Nutrients Synergies in the Agrifood Sector: A Circular Economy Framework," Energies, MDPI, vol. 14(1), pages 1-17, December.
    8. Murillo Vetroni Barros & Rômulo Henrique Gomes Jesus & Bruno Silva Ribeiro & Cassiano Moro Piekarski, 2023. "Going in Circles: Key Aspects for Circular Economy Contributions to Agro-industrial Cooperatives," Circular Economy and Sustainability, Springer, vol. 3(2), pages 861-880, June.
    9. Martina Slámová & Alexandra Kruse & Ingrid Belčáková & Johannes Dreer, 2021. "Old but Not Old Fashioned: Agricultural Landscapes as European Heritage and Basis for Sustainable Multifunctional Farming to Earn a Living," Sustainability, MDPI, vol. 13(9), pages 1-22, April.
    10. Onat, Nuri Cihat & Kucukvar, Murat, 2020. "Carbon footprint of construction industry: A global review and supply chain analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    11. Di Zhang & Zhanqi Wang & Shicheng Li & Hongwei Zhang, 2021. "Impact of Land Urbanization on Carbon Emissions in Urban Agglomerations of the Middle Reaches of the Yangtze River," IJERPH, MDPI, vol. 18(4), pages 1-20, February.
    12. Bin Huang & Ke Xing & Stephen Pullen & Lida Liao, 2020. "Exploring Carbon Neutral Potential in Urban Densification: A Precinct Perspective and Scenario Analysis," Sustainability, MDPI, vol. 12(12), pages 1-19, June.
    13. Aguilera, Eduardo & Díaz-Gaona, Cipriano & García-Laureano, Raquel & Reyes-Palomo, Carolina & Guzmán, Gloria I. & Ortolani, Livia & Sánchez-Rodríguez, Manuel & Rodríguez-Estévez, Vicente, 2020. "Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review," Agricultural Systems, Elsevier, vol. 181(C).
    14. Barros, Murillo Vetroni & Salvador, Rodrigo & de Francisco, Antonio Carlos & Piekarski, Cassiano Moro, 2020. "Mapping of research lines on circular economy practices in agriculture: From waste to energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Luca Adami & Marco Schiavon, 2021. "From Circular Economy to Circular Ecology: A Review on the Solution of Environmental Problems through Circular Waste Management Approaches," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    16. Finbarr G. Horgan & Dylan Floyd & Enrique A. Mundaca & Eduardo Crisol-Martínez, 2023. "Spent Coffee Grounds Applied as a Top-Dressing or Incorporated into the Soil Can Improve Plant Growth While Reducing Slug Herbivory," Agriculture, MDPI, vol. 13(2), pages 1-21, January.
    17. Debora Puglia & Daniela Pezzolla & Giovanni Gigliotti & Luigi Torre & Maria Luce Bartucca & Daniele Del Buono, 2021. "The Opportunity of Valorizing Agricultural Waste, Through Its Conversion into Biostimulants, Biofertilizers, and Biopolymers," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
    18. Fenner, Andriel Evandro & Kibert, Charles Joseph & Woo, Junghoon & Morque, Shirley & Razkenari, Mohamad & Hakim, Hamed & Lu, Xiaoshu, 2018. "The carbon footprint of buildings: A review of methodologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1142-1152.
    19. Tirkey, Jeewan Vachan & Kumar, Ajeet & Singh, Deepak Kumar, 2022. "Energy consumption, greenhouse gas emissions and economic feasibility studies of biodiesel production from Mahua (Madhuca longifolia) in India," Energy, Elsevier, vol. 249(C).
    20. Antonio Ángel Rodríguez Serrano & Santiago Porras Álvarez, 2016. "Life Cycle Assessment in Building: A Case Study on the Energy and Emissions Impact Related to the Choice of Housing Typologies and Construction Process in Spain," Sustainability, MDPI, vol. 8(3), pages 1-29, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:5915-:d:561282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.