IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p5887-d560894.html
   My bibliography  Save this article

Dynamics and Drivers of Grasslands in the Eurasian Steppe during 2000–2014

Author

Listed:
  • Yanzhen Zhang

    (Department of Ecology, School of Life Science, Nanjing University, Nanjing 210046, China)

  • Qian Wang

    (School of Environment and Planning, Liaocheng University, Liaocheng 252059, China)

  • Zhaoqi Wang

    (State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China)

  • Jianlong Li

    (Department of Ecology, School of Life Science, Nanjing University, Nanjing 210046, China)

  • Zengrang Xu

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

The Eurasian steppe (EAS) is the largest contiguous grassland worldwide. Quantitative evaluations of the relative impacts of climate change and human activities on grasslands are significant for understanding grassland degradation mechanisms and controlling degraded grasslands. In this study, we analyzed the grassland productivity based on multiple forms of net primary productivity (NPP), including climate NPP (CNPP), actual NPP (ANPP), and human-caused NPP (HNPP) during 2000–2014. The results demonstrate that the average value of annual ANPP in the EAS was 47.36 gC/(m 2 ·year), with a weak decrease (−0.02 gC/(m 2 ·year)) during the study period. The area of grassland degradation account for 48.52% of the total grassland area in EAS, while the area of grassland recovery account for 51.48%. Restorative grassland was mainly distributed in Mongolia and China, while worse grassland was mainly distributed in the Kazakh steppe regions. Grassland degradation in China was mainly caused by climate change, whereas it was mainly caused by human activities in Mongolia. Grassland recovery in Kazakh steppe regions was mainly caused by human activities, but in Mongolia, it was mainly caused by climate change. Compared with temperature, precipitation played a more significant role on grassland productivity.

Suggested Citation

  • Yanzhen Zhang & Qian Wang & Zhaoqi Wang & Jianlong Li & Zengrang Xu, 2021. "Dynamics and Drivers of Grasslands in the Eurasian Steppe during 2000–2014," Sustainability, MDPI, vol. 13(11), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:5887-:d:560894
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/5887/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/5887/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christopher Potter & Steven Klooster & Vanessa Genovese, 2012. "Net primary production of terrestrial ecosystems from 2000 to 2009," Climatic Change, Springer, vol. 115(2), pages 365-378, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuefeng Xu & Jiakui Tang & Na Zhang & Anan Zhang & Wuhua Wang & Qiang Sun, 2023. "Remote Sensing Classification of Temperate Grassland in Eurasia Based on Normalized Difference Vegetation Index (NDVI) Time-Series Data," Sustainability, MDPI, vol. 15(20), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qifei Zhang & Congjian Sun & Yaning Chen & Wei Chen & Yanyun Xiang & Jiao Li & Yuting Liu, 2022. "Recent Oasis Dynamics and Ecological Security in the Tarim River Basin, Central Asia," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    2. Shulin Chen & Li Yang & Xiaotong Liu & Zhenghao Zhu, 2022. "Net Primary Productivity Variations Associated with Climate Change and Human Activities in Nanjing Metropolitan Area of China," IJERPH, MDPI, vol. 19(22), pages 1-18, November.
    3. Xiangwei Zhao & Qian Gao & Yaojie Yue & Lian Duan & Shun Pan, 2018. "A System Analysis on Steppe Sustainability and Its Driving Forces—A Case Study in China," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    4. John Nyandansobi Simon & Narissara Nuthammachot & Teerawet Titseesang & Kingsley Ezechukwu Okpara & Kuaanan Techato, 2021. "Spatial Assessment of Para Rubber ( Hevea brasiliensis ) above Ground Biomass Potentials in Songkhla Province, Southern Thailand," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    5. Yuanming Xie & Zemeng Ma & Mingjie Fang & Weiguo Liu & Feiyan Yu & Jiajing Tian & Shuoxin Zhang & Yan Yan, 2023. "Analysis of Net Primary Productivity of Retired Farmlands in the Grain-for-Green Project in China from 2011 to 2020," Land, MDPI, vol. 12(5), pages 1-16, May.
    6. Rodigheri, Grazieli & Fontana, Denise Cybis & da Luz, Luana Becker & Dalmago, Genei Antonio & Schirmbeck, Lucimara Wolfarth & Schirmbeck, Juliano & de Gouvêa, Jorge Alberto & da Cunha, Gilberto Rocca, 2024. "TVDI-based water stress coefficient to estimate net primary productivity in soybean areas," Ecological Modelling, Elsevier, vol. 490(C).
    7. Irene Petrosillo & Donatella Valente & Christian Mulder & Bai-Lian Li & K. Bruce Jones & Giovanni Zurlini, 2021. "The Resilient Recurrent Behavior of Mediterranean Semi-Arid Complex Adaptive Landscapes," Land, MDPI, vol. 10(3), pages 1-18, March.
    8. Wang, Zhaoqi, 2019. "Estimating of terrestrial carbon storage and its internal carbon exchange under equilibrium state," Ecological Modelling, Elsevier, vol. 401(C), pages 94-110.
    9. Aguilera, Eduardo & Díaz-Gaona, Cipriano & García-Laureano, Raquel & Reyes-Palomo, Carolina & Guzmán, Gloria I. & Ortolani, Livia & Sánchez-Rodríguez, Manuel & Rodríguez-Estévez, Vicente, 2020. "Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review," Agricultural Systems, Elsevier, vol. 181(C).
    10. Siyang Yin & Wenjin Wu & Xuejing Zhao & Chen Gong & Xinwu Li & Lu Zhang, 2020. "Understanding spatiotemporal patterns of global forest NPP using a data-driven method based on GEE," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-16, March.
    11. Shaoda Liu, 2019. "Carbon Dioxide Emission from Streams and Rivers as an Integrative Part of Terrestrial Respiration," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 19(2), pages 50-54, May.
    12. Wang, Zhengxin & Peng, Xinggan & Xia, Ao & Shah, Akeel A. & Yan, Huchao & Huang, Yun & Zhu, Xianqing & Zhu, Xun & Liao, Qiang, 2023. "Comparison of machine learning methods for predicting the methane production from anaerobic digestion of lignocellulosic biomass," Energy, Elsevier, vol. 263(PD).
    13. Lei Hao & Shan Wang & Xiuping Cui & Yongguang Zhai, 2021. "Spatiotemporal Dynamics of Vegetation Net Primary Productivity and Its Response to Climate Change in Inner Mongolia from 2002 to 2019," Sustainability, MDPI, vol. 13(23), pages 1-16, December.
    14. Jane Southworth & Lesley Rigg & Cerian Gibbes & Peter Waylen & Likai Zhu & Shannon McCarragher & Lin Cassidy, 2013. "Integrating Dendrochronology, Climate and Satellite Remote Sensing to Better Understand Savanna Landscape Dynamics in the Okavango Delta, Botswana," Land, MDPI, vol. 2(4), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:5887-:d:560894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.