IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i10p5708-d557948.html
   My bibliography  Save this article

Estimation of Outdoor PM 2.5 Infiltration into Multifamily Homes Depending on Building Characteristics Using Regression Models

Author

Listed:
  • Bo Ram Park

    (Department of Architectural Engineering, Graduate School, University of Seoul, Seoul 02504, Korea)

  • Ye Seul Eom

    (Department of Architectural Engineering, Graduate School, University of Seoul, Seoul 02504, Korea)

  • Dong Hee Choi

    (Department of Architectural Engineering, College of Engineering, Kyungil University, Gyeongsan 38428, Korea)

  • Dong Hwa Kang

    (Department of Architectural Engineering, College of Urban Sciences, University of Seoul, Seoul 02504, Korea)

Abstract

The purpose of this study was to evaluate outdoor PM 2.5 infiltration into multifamily homes according to the building characteristics using regression models. Field test results from 23 multifamily homes were analyzed to investigate the infiltration factor and building characteristics including floor area, volume, outer surface area, building age, and airtightness. Correlation and regression analysis were then conducted to identify the building factor that is most strongly associated with the infiltration of outdoor PM 2.5 . The field tests revealed that the average PM 2.5 infiltration factor was 0.71 (±0.19). The correlation analysis of the building characteristics and PM 2.5 infiltration factor revealed that building airtightness metrics (ACH 50 , ELA/FA, and NL) had a statistically significant ( p < 0.05) positive correlation ( r = 0.70, 0.69, and 0.68, respectively) with the infiltration factor. Following the correlation analysis, a regression model for predicting PM 2.5 infiltration based on the ACH 50 airtightness index was proposed. The study confirmed that the outdoor-origin PM 2.5 concentration in sufficiently leaky units could be up to 1.59 times higher than that in airtight units.

Suggested Citation

  • Bo Ram Park & Ye Seul Eom & Dong Hee Choi & Dong Hwa Kang, 2021. "Estimation of Outdoor PM 2.5 Infiltration into Multifamily Homes Depending on Building Characteristics Using Regression Models," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5708-:d:557948
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/10/5708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/10/5708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Volker Liermann & Sangmeng Li, 2021. "Methods of Machine Learning," Springer Books, in: Volker Liermann & Claus Stegmann (ed.), The Digital Journey of Banking and Insurance, Volume III, pages 225-238, Springer.
    2. Dong Hee Choi & Dong Hwa Kang, 2018. "Indoor/Outdoor Relationships of Airborne Particles under Controlled Pressure Difference across the Building Envelope in Korean Multifamily Apartments," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Zhang & Bora Cetin & Tuncer B. Edil, 2021. "Seasonal Performance Evaluation of Pavement Base Using Recycled Materials," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    2. Paolo Lazzeroni & Brunella Caroleo & Maurizio Arnone & Cristiana Botta, 2021. "A Simplified Approach to Estimate EV Charging Demand in Urban Area: An Italian Case Study," Energies, MDPI, vol. 14(20), pages 1-18, October.
    3. Eldar Yeskuatov & Sook-Ling Chua & Lee Kien Foo, 2022. "Leveraging Reddit for Suicidal Ideation Detection: A Review of Machine Learning and Natural Language Processing Techniques," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    4. Qi Chu & Guang Bao & Jiayu Sun, 2022. "Progress and Prospects of Destination Image Research in the Last Decade," Sustainability, MDPI, vol. 14(17), pages 1-21, August.
    5. Israr Ullah & Bilal Aslam & Syed Hassan Iqbal Ahmad Shah & Aqil Tariq & Shujing Qin & Muhammad Majeed & Hans-Balder Havenith, 2022. "An Integrated Approach of Machine Learning, Remote Sensing, and GIS Data for the Landslide Susceptibility Mapping," Land, MDPI, vol. 11(8), pages 1-20, August.
    6. Mariusz Woszczyński & Joanna Rogala-Rojek & Krzysztof Stankiewicz, 2022. "Advancement of the Monitoring System for Arch Support Geometry and Loads," Energies, MDPI, vol. 15(6), pages 1-21, March.
    7. Gang Zhou & Manyi Cui & Junhong Wan & Shiqiang Zhang, 2021. "A Review on Snowmelt Models: Progress and Prospect," Sustainability, MDPI, vol. 13(20), pages 1-27, October.
    8. Yan Yang & Chunfa Sha & Wencheng Su & Edwin Kofi Nyefrer Donkor, 2022. "Research on Online Destination Image of Zhenjiang Section of the Grand Canal Based on Network Content Analysis," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    9. Xiangyong Ni & Kangkang Duan, 2022. "Machine Learning-Based Models for Shear Strength Prediction of UHPFRC Beams," Mathematics, MDPI, vol. 10(16), pages 1-26, August.
    10. Muhammad Majeed & Aqil Tariq & Muhammad Mushahid Anwar & Arshad Mahmood Khan & Fahim Arshad & Faisal Mumtaz & Muhammad Farhan & Lili Zhang & Aroosa Zafar & Marjan Aziz & Sanaullah Abbasi & Ghani Rahma, 2021. "Monitoring of Land Use–Land Cover Change and Potential Causal Factors of Climate Change in Jhelum District, Punjab, Pakistan, through GIS and Multi-Temporal Satellite Data," Land, MDPI, vol. 10(10), pages 1-17, September.
    11. You-Hyun Park & Sung-Hwa Kim & Yoon-Young Choi, 2021. "Prediction Models of Early Childhood Caries Based on Machine Learning Algorithms," IJERPH, MDPI, vol. 18(16), pages 1-11, August.
    12. Vikkram Singh & Joshua Chobotaru, 2022. "Digital Divide: Barriers to Accessing Online Government Services in Canada," Administrative Sciences, MDPI, vol. 12(3), pages 1-12, September.
    13. Jingfang Liu & Mengshi Shi & Huihong Jiang, 2022. "Detecting Suicidal Ideation in Social Media: An Ensemble Method Based on Feature Fusion," IJERPH, MDPI, vol. 19(13), pages 1-13, July.
    14. Yingfan Zhang & Tingting Fu & Xueyao Chen & Hancheng Guo & Hongyi Li & Bifeng Hu, 2022. "Modeling Cadmium Contents in a Soil–Rice System and Identifying Potential Controls," Land, MDPI, vol. 11(5), pages 1-13, April.
    15. Chang-Jin Ma & Gong-Unn Kang, 2020. "Air Quality Variation in Wuhan, Daegu, and Tokyo during the Explosive Outbreak of COVID-19 and Its Health Effects," IJERPH, MDPI, vol. 17(11), pages 1-12, June.
    16. Liuchang Xu & Jie Wang & Dayu Xu & Liang Xu, 2022. "Integrating Individual Factors to Construct Recognition Models of Consumer Fraud Victimization," IJERPH, MDPI, vol. 19(1), pages 1-12, January.
    17. Qinglin Wu & Meidie Pan & Shikai Zhang & Dongpeng Sun & Yang Yang & Dong Chen & David A. Weitz & Xiang Gao, 2022. "Research Progress in High-Throughput Screening of CO 2 Reduction Catalysts," Energies, MDPI, vol. 15(18), pages 1-18, September.
    18. Liang Xu & Yanyang Luo & Xin Wen & Zaoyi Sun & Chiju Chao & Tianshu Xia & Liuchang Xu, 2022. "Human Personality Is Associated with Geographical Environment in Mainland China," IJERPH, MDPI, vol. 19(17), pages 1-13, August.
    19. William Mounter & Chris Ogwumike & Huda Dawood & Nashwan Dawood, 2021. "Machine Learning and Data Segmentation for Building Energy Use Prediction—A Comparative Study," Energies, MDPI, vol. 14(18), pages 1-42, September.
    20. Milad Zam & Mohammadhosein Tavakoli & Hasan Ramezanian & Amin Rezasoltani, 2022. "Assessing the different aspects of consuming fashion and the role of self-confidence on the buying behaviour of fashion consumers in the clothing market as a mediator," Papers 2209.02367, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5708-:d:557948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.