IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2020i1p260-d470338.html
   My bibliography  Save this article

Peak Traffic Flow Predictions: Exploiting Toll Data from Large Expressway Networks

Author

Listed:
  • Ling Shen

    (Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 211189, China
    Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 211189, China
    School of Transportation, Southeast University, Nanjing 211189, China)

  • Jian Lu

    (Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 211189, China
    Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 211189, China
    School of Transportation, Southeast University, Nanjing 211189, China)

  • Dongdong Geng

    (Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 211189, China
    Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 211189, China
    School of Transportation, Southeast University, Nanjing 211189, China)

  • Ling Deng

    (Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 211189, China
    Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 211189, China
    School of Transportation, Southeast University, Nanjing 211189, China)

Abstract

Big data from toll stations provides reliable and accurate origin-destination (OD) pair information of expressway networks. However, although the short-term traffic prediction model based on big data is being constantly improved, the volatility and nonlinearity of peak traffic flow restricts the accuracy of the prediction results. Therefore, this research attempts to solve this problem through three contributions, firstly, proposing the use the Pauta criterion from statistics as the standard for defining the anomaly criteria of expressway traffic flows. Through comparison with the common local outlier factor (LOF) method, the rationality and advantages of the Pauta criterion were expounded. Secondly, adding week attributes to data, and splitting the data based on the similarity characteristics of traffic flow time series in order to improve the accuracy and efficiency of data input. Thirdly, by introducing empirical mode decomposition (EMD) to decompose the signal before autoregressive integrated moving average (ARIMA) model training is carried out. The first two contributions are for efficiency, the third is to deal with the volatility and nonlinearity of the abnormal peak training data. Finally, the model is analyzed, based on the expressway toll data of the Jiangsu Province. The results show that the EMD-ARIMA model has more advantages than the ARIMA model when dealing with fluctuating data.

Suggested Citation

  • Ling Shen & Jian Lu & Dongdong Geng & Ling Deng, 2020. "Peak Traffic Flow Predictions: Exploiting Toll Data from Large Expressway Networks," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:260-:d:470338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/1/260/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/1/260/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng, Anyu & Jiang, Xiao & Li, Yongfu & Zhang, Chao & Zhu, Hao, 2017. "Multiple sources and multiple measures based traffic flow prediction using the chaos theory and support vector regression method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 422-434.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Zhaosheng Yang & Qichun Bing & Ciyun Lin & Nan Yang & Duo Mei, 2014. "Research on Short-Term Traffic Flow Prediction Method Based on Similarity Search of Time Series," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-8, August.
    4. Kevin Cullinane, 2004. "Statistical and Econometric Methods for Transportation Data Analysis," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 6(2), pages 187-189, June.
    5. Asif Raza & Ming Zhong, 2018. "Hybrid artificial neural network and locally weighted regression models for lane-based short-term urban traffic flow forecasting," Transportation Planning and Technology, Taylor & Francis Journals, vol. 41(8), pages 901-917, November.
    6. Yan, Ying & Zhang, Shen & Tang, Jinjun & Wang, Xiaofei, 2017. "Understanding characteristics in multivariate traffic flow time series from complex network structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 149-160.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Zhelin & Xu, Fan & Yang, Fangfang, 2023. "State of health prediction of lithium-ion batteries based on autoregression with exogenous variables model," Energy, Elsevier, vol. 262(PB).
    2. Zhang, Michael PhD & Gao, Hang PhD & Chen, Di & Qi, Yanlin, 2024. "A Data-Driven Approach to Manage High-Occupancy Toll Lanes in California," Institute of Transportation Studies, Working Paper Series qt71d0h6hz, Institute of Transportation Studies, UC Davis.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    2. Beran, Jan & Feng, Yuanhua, 1999. "Local Polynomial Estimation with a FARIMA-GARCH Error Process," CoFE Discussion Papers 99/08, University of Konstanz, Center of Finance and Econometrics (CoFE).
    3. Corbet, Shaen & Larkin, Charles & McMullan, Caroline, 2020. "The impact of industrial incidents on stock market volatility," Research in International Business and Finance, Elsevier, vol. 52(C).
    4. Cho, Guedae & Kim, MinKyoung & Koo, Won W., 2003. "Relative Agricultural Price Changes In Different Time Horizons," 2003 Annual meeting, July 27-30, Montreal, Canada 22249, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    5. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    6. Umar, Muhammad & Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Furqan, Mehreen, 2023. "Asymmetric volatility structure of equity returns: Evidence from an emerging market," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 330-336.
    7. Shively, Gerald E., 2001. "Price thresholds, price volatility, and the private costs of investment in a developing country grain market," Economic Modelling, Elsevier, vol. 18(3), pages 399-414, August.
    8. Lahmiri, Salim & Bekiros, Stelios, 2017. "Disturbances and complexity in volatility time series," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 38-42.
    9. Hao Chen & Qiulan Wan & Yurong Wang, 2014. "Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models," Energies, MDPI, vol. 7(7), pages 1-14, July.
    10. Tomanova, Lucie, 2013. "Exchange Rate Volatility and the Foreign Trade in CEEC," EY International Congress on Economics I (EYC2013), October 24-25, 2013, Ankara, Turkey 267, Ekonomik Yaklasim Association.
    11. Chang, Chia-Lin, 2015. "Modelling a latent daily Tourism Financial Conditions Index," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 113-126.
    12. Jumah, Adusei & Kunst, Robert M., 2001. "The Effects of Exchange-Rate Exposures on Equity Asset Markets," Economics Series 94, Institute for Advanced Studies.
    13. Claudio Morana, 2010. "Heteroskedastic Factor Vector Autoregressive Estimation of Persistent and Non Persistent Processes Subject to Structural Breaks," ICER Working Papers - Applied Mathematics Series 36-2010, ICER - International Centre for Economic Research.
    14. Gruener Hans Peter & Hayo Bernd & Hefeker Carsten, 2009. "Unions, Wage Setting and Monetary Policy Uncertainty," The B.E. Journal of Macroeconomics, De Gruyter, vol. 9(1), pages 1-25, October.
    15. Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.
    16. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    17. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    18. ?ikolaos A. Kyriazis, 2021. "Impacts of Stock Indices, Oil, and Twitter Sentiment on Major Cryptocurrencies during the COVID-19 First Wave," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 133-146.
    19. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    20. Chang, Chia-Lin & Hsu, Hui-Kuang, 2013. "Modelling Volatility Size Effects for Firm Performance: The Impact of Chinese Tourists to Taiwan," MPRA Paper 45691, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2020:i:1:p:260-:d:470338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.