IDEAS home Printed from https://ideas.repec.org/a/taf/transp/v41y2018i8p901-917.html
   My bibliography  Save this article

Hybrid artificial neural network and locally weighted regression models for lane-based short-term urban traffic flow forecasting

Author

Listed:
  • Asif Raza
  • Ming Zhong

Abstract

In recent years, there has been considerable research interest in short-term traffic flow forecasting. However, forecasting models offering a high accuracy at a fine temporal resolution (e.g. 1 or 5 min) and lane level are still rare. In this study, a combination of genetic algorithm, neural network and locally weighted regression is used to achieve optimal prediction under various input and traffic settings. The genetically optimized artificial neural network (GA-ANN) and locally weighted regression (GA-LWR) models are developed and tested, with the former forecasting traffic flow every 5-min within a 30-min period and the latter for forecasting traffic flow of a particular 5-min period of each for four lanes of an urban arterial road in Beijing, China. In particular, for morning peak and off-peak traffic flow prediction, the GA-ANN 5-min traffic flow model results in average errors of 3–5% and most 95th percentile errors of 7–14% for each of the four lanes; for the peak and off-peak time traffic flow predictions, the GA-LWR 5-min traffic flow model results in average errors of 2–4% and most 95th percentile errors are lower than 10% for each of the four lanes. When compared to previous models that usually offer average errors greater than 6–15%, such empirical findings should be of interest to and instrumental for transportation authorities to incorporate in their city- or state-wide Advanced Traveller Information Systems (ATIS).

Suggested Citation

  • Asif Raza & Ming Zhong, 2018. "Hybrid artificial neural network and locally weighted regression models for lane-based short-term urban traffic flow forecasting," Transportation Planning and Technology, Taylor & Francis Journals, vol. 41(8), pages 901-917, November.
  • Handle: RePEc:taf:transp:v:41:y:2018:i:8:p:901-917
    DOI: 10.1080/03081060.2018.1526988
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03081060.2018.1526988
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03081060.2018.1526988?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ling Shen & Jian Lu & Dongdong Geng & Ling Deng, 2020. "Peak Traffic Flow Predictions: Exploiting Toll Data from Large Expressway Networks," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
    2. Yunes Almansoub & Ming Zhong & Asif Raza & Muhammad Safdar & Abdelghani Dahou & Mohammed A. A. Al-qaness, 2022. "Exploring the Effects of Transportation Supply on Mixed Land-Use at the Parcel Level," Land, MDPI, vol. 11(6), pages 1-28, May.
    3. Ivan Lorencin & Nikola Anđelić & Vedran Mrzljak & Zlatan Car, 2019. "Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation," Energies, MDPI, vol. 12(22), pages 1-26, November.
    4. Wenbao Zeng & Ketong Wang & Jianghua Zhou & Rongjun Cheng, 2023. "Traffic Flow Prediction Based on Hybrid Deep Learning Models Considering Missing Data and Multiple Factors," Sustainability, MDPI, vol. 15(14), pages 1-19, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transp:v:41:y:2018:i:8:p:901-917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GTPT20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.