IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3117-d344908.html
   My bibliography  Save this article

An Evaluation of the Ceiling Depth’s Impact on Skylight Energy Performance Predictions Through a Building Simulation

Author

Listed:
  • Amina Irakoze

    (Department of Architectural Engineering, University of Ulsan, Ulsan 44610, Korea)

  • Young-A Lee

    (Department of Architectural Engineering, University of Ulsan, Ulsan 44610, Korea)

  • Kee Han Kim

    (Department of Architectural Engineering, University of Ulsan, Ulsan 44610, Korea)

Abstract

This study evaluated the impact of including a building ceiling depth into a simulation model on skylight efficiency under two climatic conditions (Ulsan and Seoul, South Korea). Using Radiance and EnergyPlus simulation tools integrated in OpenStudio program by National Renewable Energy Laboratory, Golden, Colorado, USA, daylighting and building energy consumption were computed and assessed to evaluate the energy performance and optimization of skylights. Skylight-to-roof ratios from 1% to 25% were analyzed with ceiling depths of 1.5 m to 3 m. The results showed that the range for efficient skylight ratios became smaller with an increase of ceiling depth; in addition, small apertures were more affected by the ceiling depth than were large apertures. Under Ulsan’s climatic conditions, the optimal skylight-to-roof ratios were 8%, 9%, 10%, and 11% for ceiling depths of 1.5 m, 2 m, 2.5 m, and 3 m, respectively. In Seoul, 8% and 9% were the optimum skylight-to-roof ratios for ceiling depths of 1.5 m and 2 m, respectively; no skylight was energy efficient for a ceiling deeper than 2 m. This study indicates that ceiling depth is a critical factor in the evaluation of skylight performance; thus, it should not be excluded from a simulation model, as is often done to simplify simulation modeling.

Suggested Citation

  • Amina Irakoze & Young-A Lee & Kee Han Kim, 2020. "An Evaluation of the Ceiling Depth’s Impact on Skylight Energy Performance Predictions Through a Building Simulation," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3117-:d:344908
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3117/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3117/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gago, E.J. & Muneer, T. & Knez, M. & Köster, H., 2015. "Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1-13.
    2. Chul-Ho Kim & Seung-Eon Lee & Kang-Soo Kim, 2018. "Analysis of Energy Saving Potential in High-Performance Building Technologies under Korean Climatic Conditions," Energies, MDPI, vol. 11(4), pages 1-34, April.
    3. Sujit Kumar Sikder & Francis Eanes & Henok Birhanu Asmelash & Shiba Kar & Theo Koetter, 2016. "The Contribution of Energy-Optimized Urban Planning to Efficient Resource Use–A Case Study on Residential Settlement Development in Dhaka City, Bangladesh," Sustainability, MDPI, vol. 8(2), pages 1-19, February.
    4. Kee Han Kim & John Kie-Whan Oh & WoonSeong Jeong, 2016. "Study on Solar Radiation Models in South Korea for Improving Office Building Energy Performance Analysis," Sustainability, MDPI, vol. 8(6), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    2. Javier López Gómez & Ana Ogando Martínez & Francisco Troncoso Pastoriza & Lara Febrero Garrido & Enrique Granada Álvarez & José Antonio Orosa García, 2020. "Photovoltaic Power Prediction Using Artificial Neural Networks and Numerical Weather Data," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    3. Antonis Kontadakis & Aris Tsangrassoulis & Lambros Doulos & Stelios Zerefos, 2017. "A Review of Light Shelf Designs for Daylit Environments," Sustainability, MDPI, vol. 10(1), pages 1-24, December.
    4. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Nor, Khalil M.D. & Khoshnoudi, Masoumeh, 2016. "Using fuzzy multiple criteria decision making approaches for evaluating energy saving technologies and solutions in five star hotels: A new hierarchical framework," Energy, Elsevier, vol. 117(P1), pages 131-148.
    5. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
    6. Das, Aparna & Paul, Saikat Kumar, 2015. "Artificial illumination during daytime in residential buildings: Factors, energy implications and future predictions," Applied Energy, Elsevier, vol. 158(C), pages 65-85.
    7. Islam, Md. Monirul & Irfan, Muhammad & Shahbaz, Muhammad & Vo, Xuan Vinh, 2022. "Renewable and non-renewable energy consumption in Bangladesh: The relative influencing profiles of economic factors, urbanization, physical infrastructure and institutional quality," Renewable Energy, Elsevier, vol. 184(C), pages 1130-1149.
    8. Chang, Kai & Zhang, Qingyuan, 2019. "Improvement of the hourly global solar model and solar radiation for air-conditioning design in China," Renewable Energy, Elsevier, vol. 138(C), pages 1232-1238.
    9. Kai Zhang & Dong Yan, 2023. "Exploring Indoor and Outdoor Residential Factors of High-Density Communities for Promoting the Housing Development," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
    10. Nundy, Srijita & Ghosh, Aritra, 2020. "Thermal and visual comfort analysis of adaptive vacuum integrated switchable suspended particle device window for temperate climate," Renewable Energy, Elsevier, vol. 156(C), pages 1361-1372.
    11. Sreelakshmi, Kavuthimadathil & Ramamurthy, K., 2022. "Review on fibre-optic-based daylight enhancement systems in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    12. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    13. Nabil Touili, 2021. "Hazards, Infrastructure Networks and Unspecific Resilience," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    14. Chia-Nan Wang & Han-Khanh Nguyen, 2017. "Enhancing Urban Development Quality Based on the Results of Appraising Efficient Performance of Investors—A Case Study in Vietnam," Sustainability, MDPI, vol. 9(8), pages 1-22, August.
    15. Jiraphorn Mahawan & Atthakorn Thongtha, 2021. "Experimental Investigation of Illumination Performance of Hollow Light Pipe for Energy Consumption Reduction in Buildings," Energies, MDPI, vol. 14(2), pages 1-17, January.
    16. Evangelos-Nikolaos D. Madias & Lambros T. Doulos & Panagiotis A. Kontaxis & Frangiskos V. Topalis, 2022. "Multicriteria decision aid analysis for the optimum performance of an ambient light sensor: methodology and case study," Operational Research, Springer, vol. 22(2), pages 1333-1361, April.
    17. Joana Fernandes & Maria Catarina Santos & Rui Castro, 2021. "Introductory Review of Energy Efficiency in Buildings Retrofits," Energies, MDPI, vol. 14(23), pages 1-18, December.
    18. Débora Thomé Miranda & Douglas Barreto & Inês Flores-Colen, 2024. "An Evaluation of the Luminous Performance of a School Environment Integrating Artificial Lighting and Daylight," Sustainability, MDPI, vol. 16(4), pages 1-16, February.
    19. Lindita Bande & Adalberto Guerra Cabrera & Young Ki Kim & Afshin Afshari & Mario Favalli Ragusini & Melanie Gines Cooke, 2019. "A Building Retrofit and Sensitivity Analysis in an Automatically Calibrated Model Considering the Urban Heat Island Effect in Abu Dhabi, UAE," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    20. Roberto Sebastiano Faranda & Kim Fumagalli & Francesca Oliva, 2023. "Tips for Buildings Energy Saving: Results of Some Research," Energies, MDPI, vol. 16(3), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3117-:d:344908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.