IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p2117-d330418.html
   My bibliography  Save this article

Hybridized Intelligent Home Renewable Energy Management System for Smart Grids

Author

Listed:
  • Yonghong Ma

    (School of Economics and Management, Harbin Engineering University, Harbin 150001, China)

  • Baixuan Li

    (School of Economics and Management, Harbin Engineering University, Harbin 150001, China
    Academy of Agricultural Planning and Engineering, Beijing 100125, China)

Abstract

The incorporation of renewable energies and power storage at distribution facilities are one of the important features in the smart grid. In this paper, a hybridized intelligent home renewable energy management system (HIHREM) that combines solar energy and energy storage services with the smart home is planned based on the demand response and time of consumption pricing is applied to programs that offer discounts to consumers that reduce their energy consumption during high demand periods. The system is designed and handled with minimal energy requirements at home through installation of renewable energy, preparation, and arrangement of power stream during peak and off-peak periods. The best energy utilization of residential buildings with various overlapping purposes is one of the most difficult issues correlated with the implementation of intelligent micro-network systems. A major component of the smart grid, the domestic energy control system (HIHREM) provides many benefits, such as power bill reductions, reduction in wind generation, and demand compliance. This showed that the proposed energy scheduling method minimizes the energy consumption by 48% and maximizes the renewable energy consumed at the rate 65% of the total energy generated. A new model for smart homes with renewable energies is introduced in this report. The proposed HIHREM method achieves high performance and reduces cost-utility.

Suggested Citation

  • Yonghong Ma & Baixuan Li, 2020. "Hybridized Intelligent Home Renewable Energy Management System for Smart Grids," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:2117-:d:330418
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/2117/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/2117/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonas Sievers & Thomas Blank, 2023. "A Systematic Literature Review on Data-Driven Residential and Industrial Energy Management Systems," Energies, MDPI, vol. 16(4), pages 1-21, February.
    2. Ángeles Verdejo-Espinosa & Macarena Espinilla-Estévez & Francisco Mata Mata, 2020. "Smart Grids and Their Role in Transforming Human Activities—A Systematic Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-26, October.
    3. Luis Gomes & António Coelho & Zita Vale, 2022. "Assessment of Energy Customer Perception, Willingness, and Acceptance to Participate in Smart Grids—A Portuguese Survey," Energies, MDPI, vol. 16(1), pages 1-16, December.
    4. Nakıp, Mert & Çopur, Onur & Biyik, Emrah & Güzeliş, Cüneyt, 2023. "Renewable energy management in smart home environment via forecast embedded scheduling based on Recurrent Trend Predictive Neural Network," Applied Energy, Elsevier, vol. 340(C).
    5. Sameh Mahjoub & Larbi Chrifi-Alaoui & Saïd Drid & Nabil Derbel, 2023. "Control and Implementation of an Energy Management Strategy for a PV–Wind–Battery Microgrid Based on an Intelligent Prediction Algorithm of Energy Production," Energies, MDPI, vol. 16(4), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    2. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    3. Chen, Chien-fei & Nelson, Hannah & Xu, Xiaojing & Bonilla, Gregory & Jones, Nicholas, 2021. "Beyond technology adoption: Examining home energy management systems, energy burdens and climate change perceptions during COVID-19 pandemic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Ioanna-M. Chatzigeorgiou & Christos Diou & Kyriakos C. Chatzidimitriou & Georgios T. Andreou, 2021. "Demand Response Alert Service Based on Appliance Modeling," Energies, MDPI, vol. 14(10), pages 1-15, May.
    5. Mahmoud H. Elkholy & Tomonobu Senjyu & Mohammed Elsayed Lotfy & Abdelrahman Elgarhy & Nehad S. Ali & Tamer S. Gaafar, 2022. "Design and Implementation of a Real-Time Smart Home Management System Considering Energy Saving," Sustainability, MDPI, vol. 14(21), pages 1-22, October.
    6. Pol Olivella-Rosell & Pau Lloret-Gallego & Íngrid Munné-Collado & Roberto Villafafila-Robles & Andreas Sumper & Stig Ødegaard Ottessen & Jayaprakash Rajasekharan & Bernt A. Bremdal, 2018. "Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level," Energies, MDPI, vol. 11(4), pages 1-19, April.
    7. Mehrjerdi, Hasan & Bornapour, Mosayeb & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh, 2019. "Unified energy management and load control in building equipped with wind-solar-battery incorporating electric and hydrogen vehicles under both connected to the grid and islanding modes," Energy, Elsevier, vol. 168(C), pages 919-930.
    8. Barbara Kasulaitis & Callie W. Babbitt & Anna Christina Tyler, 2021. "The role of consumer preferences in reducing material intensity of electronic products," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 435-447, April.
    9. Nizami, M.S.H. & Hossain, M.J. & Amin, B.M. Ruhul & Fernandez, Edstan, 2020. "A residential energy management system with bi-level optimization-based bidding strategy for day-ahead bi-directional electricity trading," Applied Energy, Elsevier, vol. 261(C).
    10. Adnan Ahmad & Asif Khan & Nadeem Javaid & Hafiz Majid Hussain & Wadood Abdul & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources," Energies, MDPI, vol. 10(4), pages 1-35, April.
    11. Correa-Florez, Carlos Adrian & Gerossier, Alexis & Michiorri, Andrea & Kariniotakis, Georges, 2018. "Stochastic operation of home energy management systems including battery cycling," Applied Energy, Elsevier, vol. 225(C), pages 1205-1218.
    12. Prinsloo, Gerro & Dobson, Robert & Mammoli, Andrea, 2018. "Synthesis of an intelligent rural village microgrid control strategy based on smartgrid multi-agent modelling and transactive energy management principles," Energy, Elsevier, vol. 147(C), pages 263-278.
    13. Zhao, Lin-Chuan & Zhou, Teng & Chang, Si-Deng & Zou, Hong-Xiang & Gao, Qiu-Hua & Wu, Zhi-Yuan & Yan, Ge & Wei, Ke-Xiang & Yeatman, Eric M. & Meng, Guang & Zhang, Wen-Ming, 2024. "A disposable cup inspired smart floor for trajectory recognition and human-interactive sensing," Applied Energy, Elsevier, vol. 357(C).
    14. Nuno Rego & Rui Castro & Carlos Santos Silva, 2023. "Assessment of Current Smart House Solutions: The Case of Portugal," Energies, MDPI, vol. 16(22), pages 1-23, November.
    15. K. Yang & Sung-Bae Cho, 2016. "Towards Sustainable Smart Homes by a Hierarchical Hybrid Architecture of an Intelligent Agent," Sustainability, MDPI, vol. 8(10), pages 1-15, October.
    16. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    17. Abdelfettah Kerboua & Fouad Boukli-Hacene & Khaldoon A Mourad, 2020. "Particle Swarm Optimization for Micro-Grid Power Management and Load Scheduling," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 71-80.
    18. Krzysztof Gajowniczek & Tomasz Ząbkowski, 2017. "Electricity forecasting on the individual household level enhanced based on activity patterns," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-26, April.
    19. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    20. Zhang, Ying & Deng, Shuai & Ni, Jiaxin & Zhao, Li & Yang, Xingyang & Li, Minxia, 2017. "A literature research on feasible application of mixed working fluid in flexible distributed energy system," Energy, Elsevier, vol. 137(C), pages 377-390.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:2117-:d:330418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.