IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0174098.html
   My bibliography  Save this article

Electricity forecasting on the individual household level enhanced based on activity patterns

Author

Listed:
  • Krzysztof Gajowniczek
  • Tomasz Ząbkowski

Abstract

Leveraging smart metering solutions to support energy efficiency on the individual household level poses novel research challenges in monitoring usage and providing accurate load forecasting. Forecasting electricity usage is an especially important component that can provide intelligence to smart meters. In this paper, we propose an enhanced approach for load forecasting at the household level. The impacts of residents’ daily activities and appliance usages on the power consumption of the entire household are incorporated to improve the accuracy of the forecasting model. The contributions of this paper are threefold: (1) we addressed short-term electricity load forecasting for 24 hours ahead, not on the aggregate but on the individual household level, which fits into the Residential Power Load Forecasting (RPLF) methods; (2) for the forecasting, we utilized a household specific dataset of behaviors that influence power consumption, which was derived using segmentation and sequence mining algorithms; and (3) an extensive load forecasting study using different forecasting algorithms enhanced by the household activity patterns was undertaken.

Suggested Citation

  • Krzysztof Gajowniczek & Tomasz Ząbkowski, 2017. "Electricity forecasting on the individual household level enhanced based on activity patterns," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-26, April.
  • Handle: RePEc:plo:pone00:0174098
    DOI: 10.1371/journal.pone.0174098
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174098
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0174098&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0174098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    2. Wieslaw Szczesny, 1991. "On the performance of a discriminant function," Journal of Classification, Springer;The Classification Society, vol. 8(2), pages 201-215, December.
    3. Hong, Tao & Pinson, Pierre & Fan, Shu, 2014. "Global Energy Forecasting Competition 2012," International Journal of Forecasting, Elsevier, vol. 30(2), pages 357-363.
    4. Javed, Fahad & Arshad, Naveed & Wallin, Fredrik & Vassileva, Iana & Dahlquist, Erik, 2012. "Forecasting for demand response in smart grids: An analysis on use of anthropologic and structural data and short term multiple loads forecasting," Applied Energy, Elsevier, vol. 96(C), pages 150-160.
    5. Beaudin, Marc & Zareipour, Hamidreza, 2015. "Home energy management systems: A review of modelling and complexity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 318-335.
    6. Maria Grazia De Giorgi & Stefano Campilongo & Antonio Ficarella & Paolo Maria Congedo, 2014. "Comparison Between Wind Power Prediction Models Based on Wavelet Decomposition with Least-Squares Support Vector Machine (LS-SVM) and Artificial Neural Network (ANN)," Energies, MDPI, vol. 7(8), pages 1-22, August.
    7. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0601, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrés M. Alonso & Francisco J. Nogales & Carlos Ruiz, 2020. "A Single Scalable LSTM Model for Short-Term Forecasting of Massive Electricity Time Series," Energies, MDPI, vol. 13(20), pages 1-19, October.
    2. Mahmoud Elkazaz & Mark Sumner & Seksak Pholboon & Richard Davies & David Thomas, 2020. "Performance Assessment of an Energy Management System for a Home Microgrid with PV Generation," Energies, MDPI, vol. 13(13), pages 1-23, July.
    3. Tulin Guzel & Hakan Cinar & Mehmet Nabi Cenet & Kamil Doruk Oguz & Ahmet Yucekaya & Mustafa Hekimoglu, 2023. "A Framework to Forecast Electricity Consumption of Meters using Automated Ranking and Data Preprocessing," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 179-193, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Chen, Chien-fei & Nelson, Hannah & Xu, Xiaojing & Bonilla, Gregory & Jones, Nicholas, 2021. "Beyond technology adoption: Examining home energy management systems, energy burdens and climate change perceptions during COVID-19 pandemic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Luo, Jian & Hong, Tao & Gao, Zheming & Fang, Shu-Cherng, 2023. "A robust support vector regression model for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 1005-1020.
    4. Mehrjerdi, Hasan & Bornapour, Mosayeb & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh, 2019. "Unified energy management and load control in building equipped with wind-solar-battery incorporating electric and hydrogen vehicles under both connected to the grid and islanding modes," Energy, Elsevier, vol. 168(C), pages 919-930.
    5. Adnan Ahmad & Asif Khan & Nadeem Javaid & Hafiz Majid Hussain & Wadood Abdul & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources," Energies, MDPI, vol. 10(4), pages 1-35, April.
    6. Joaquín Garrido-Zafra & Antonio Moreno-Munoz & Aurora Gil-de-Castro & Emilio J. Palacios-Garcia & Carlos D. Moreno-Moreno & Tomás Morales-Leal, 2019. "A Novel Direct Load Control Testbed for Smart Appliances," Energies, MDPI, vol. 12(17), pages 1-16, August.
    7. Al Essa, Mohammed Jasim M., 2019. "Home energy management of thermostatically controlled loads and photovoltaic-battery systems," Energy, Elsevier, vol. 176(C), pages 742-752.
    8. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    9. Sergio Bruno & Gabriella Dellino & Massimo La Scala & Carlo Meloni, 2019. "A Microforecasting Module for Energy Management in Residential and Tertiary Buildings †," Energies, MDPI, vol. 12(6), pages 1-20, March.
    10. Wang, Pu & Liu, Bidong & Hong, Tao, 2016. "Electric load forecasting with recency effect: A big data approach," International Journal of Forecasting, Elsevier, vol. 32(3), pages 585-597.
    11. Alvaro Llaria & Jessye Dos Santos & Guillaume Terrasson & Zina Boussaada & Christophe Merlo & Octavian Curea, 2021. "Intelligent Buildings in Smart Grids: A Survey on Security and Privacy Issues Related to Energy Management," Energies, MDPI, vol. 14(9), pages 1-37, May.
    12. Krzysztof Gajowniczek & Tomasz Ząbkowski, 2015. "Data Mining Techniques for Detecting Household Characteristics Based on Smart Meter Data," Energies, MDPI, vol. 8(7), pages 1-21, July.
    13. Muhammad Majid Hussain & Rizwan Akram & Zulfiqar Ali Memon & Mian Hammad Nazir & Waqas Javed & Muhammad Siddique, 2021. "Demand Side Management Techniques for Home Energy Management Systems for Smart Cities," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    14. Tao Hong & Katarzyna Maciejowska & Jakub Nowotarski & Rafal Weron, 2014. "Probabilistic load forecasting via Quantile Regression Averaging of independent expert forecasts," HSC Research Reports HSC/14/10, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    15. Tri-Hai Nguyen & Luong Vuong Nguyen & Jason J. Jung & Israel Edem Agbehadji & Samuel Ofori Frimpong & Richard C. Millham, 2020. "Bio-Inspired Approaches for Smart Energy Management: State of the Art and Challenges," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    16. Bidong Liu & Jiali Liu & Tao Hong, 2015. "Sister models for load forecast combination," HSC Research Reports HSC/15/02, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    17. da Fonseca, André L.A. & Chvatal, Karin M.S. & Fernandes, Ricardo A.S., 2021. "Thermal comfort maintenance in demand response programs: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    18. Schieweck, Alexandra & Uhde, Erik & Salthammer, Tunga & Salthammer, Lea C. & Morawska, Lidia & Mazaheri, Mandana & Kumar, Prashant, 2018. "Smart homes and the control of indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 705-718.
    19. WeiYu Ji & Edwin H. W. Chan, 2019. "Critical Factors Influencing the Adoption of Smart Home Energy Technology in China: A Guangdong Province Case Study," Energies, MDPI, vol. 12(21), pages 1-24, November.
    20. Nowotarski, Jakub & Weron, Rafał, 2016. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 57(C), pages 228-235.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0174098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.