IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p1764-d325834.html
   My bibliography  Save this article

Commuting Pattern Recognition Using a Systematic Cluster Framework

Author

Listed:
  • Rongrong Hong

    (Intelligent Transportation Systems Research Center, Southeast University, Nanjing 211189, China)

  • Wenming Rao

    (Intelligent Transportation Systems Research Center, Southeast University, Nanjing 211189, China)

  • Dong Zhou

    (Intelligent Transportation Systems Research Center, Southeast University, Nanjing 211189, China)

  • Chengchuan An

    (Intelligent Transportation Systems Research Center, Southeast University, Nanjing 211189, China)

  • Zhenbo Lu

    (Intelligent Transportation Systems Research Center, Southeast University, Nanjing 211189, China)

  • Jingxin Xia

    (Intelligent Transportation Systems Research Center, Southeast University, Nanjing 211189, China)

Abstract

Identifying commuting patterns for an urban network is important for various traffic applications (e.g., traffic demand management). Some studies, such as the gravity models, urban-system-model, K-means clustering, have provided insights into the investigation of commuting pattern recognition. However, commuters’ route feature is not fully considered or not accurately characterized. In this study, a systematic framework considering the route feature for commuting pattern recognition was developed for urban road networks. Three modules are included in the proposed framework. These modules were proposed based on automatic license plate recognition (ALPR) data. First, the temporal and spatial features of individual vehicles were extracted based on the trips detected by ALPR sensors, then a hierarchical clustering technique was applied to classify the detected vehicles and the ratio of commuting trips was derived. Based on the ratio of commuting trips, the temporal and spatial commuting patterns were investigated, respectively. The proposed method was finally implemented in a ring expressway of Kunshan, China. The results showed that the method can accurately extract the commuting patterns. Further investigations revealed the dynamic temporal-spatial features of commuting patterns. The findings of this study demonstrate the effectiveness of the proposed method in mining commuting patterns at urban traffic networks.

Suggested Citation

  • Rongrong Hong & Wenming Rao & Dong Zhou & Chengchuan An & Zhenbo Lu & Jingxin Xia, 2020. "Commuting Pattern Recognition Using a Systematic Cluster Framework," Sustainability, MDPI, vol. 12(5), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1764-:d:325834
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/1764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/1764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chandra Bhat, 2001. "Modeling the Commute Activity-Travel Pattern of Workers: Formulation and Empirical Analysis," Transportation Science, INFORMS, vol. 35(1), pages 61-79, February.
    2. Gargiulo, Floriana & Lenormand, Maxime & Huet, Sylvie & Baqueiro Espinosa, Omar, 2012. "Commuting network models: Getting the essentials," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15(2).
    3. Frank Primerano & Michael Taylor & Ladda Pitaksringkarn & Peter Tisato, 2008. "Defining and understanding trip chaining behaviour," Transportation, Springer, vol. 35(1), pages 55-72, January.
    4. Dimitrios Tsiotas & George Aspridis & Ioannis Gavardinas & Labros Sdrolias & Dagmar Škodová-Parmová, 2019. "Gravity modeling in social science: the case of the commuting phenomenon in Greece," Evolutionary and Institutional Economics Review, Springer, vol. 16(1), pages 139-158, June.
    5. Filippo Simini & Marta C. González & Amos Maritan & Albert-László Barabási, 2012. "A universal model for mobility and migration patterns," Nature, Nature, vol. 484(7392), pages 96-100, April.
    6. Floriana Gargiulo & Maxime Lenormand & Sylvie Huet & Omar Baqueiro Espinosa, 2012. "Commuting Network Models: Getting the Essentials," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 15(2), pages 1-6.
    7. Ma, Xiaolei & Liu, Congcong & Wen, Huimin & Wang, Yunpeng & Wu, Yao-Jan, 2017. "Understanding commuting patterns using transit smart card data," Journal of Transport Geography, Elsevier, vol. 58(C), pages 135-145.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thompson, C.A. & Saxberg, K. & Lega, J. & Tong, D. & Brown, H.E., 2019. "A cumulative gravity model for inter-urban spatial interaction at different scales," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    2. Constanza Fosco, 2012. "Spatial Difusion and Commuting Flows," Documentos de Trabajo en Economia y Ciencia Regional 30, Universidad Catolica del Norte, Chile, Department of Economics, revised Sep 2012.
    3. Lenormand, Maxime & Huet, Sylvie & Gargiulo, Floriana, 2014. "Generating French virtual commuting networks at the municipality level," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 7(1), pages 43-55.
    4. Kwang-Sub Lee & Jin Ki Eom & Jun Lee & Sangpil Ko, 2021. "Analysis of the Activity and Travel Patterns of the Elderly Using Mobile Phone-Based Hourly Locational Trajectory Data: Case Study of Gangnam, Korea," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    5. Lenormand, Maxime & Bassolas, Aleix & Ramasco, José J., 2016. "Systematic comparison of trip distribution laws and models," Journal of Transport Geography, Elsevier, vol. 51(C), pages 158-169.
    6. Maxime Lenormand & Sylvie Huet & Floriana Gargiulo & Guillaume Deffuant, 2012. "A Universal Model of Commuting Networks," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-7, October.
    7. Bautista-Hernández, Dorian Antonio, 2022. "Individual, household, and urban form determinants of trip chaining of non-work travel in México City," Journal of Transport Geography, Elsevier, vol. 98(C).
    8. Su, Rongxiang & Xiao, Jingyi & McBride, Elizabeth C. & Goulias, Konstadinos G., 2021. "Understanding senior's daily mobility patterns in California using human mobility motifs," Journal of Transport Geography, Elsevier, vol. 94(C).
    9. Chen, Yanguang, 2023. "Demonstration of duality of fractal gravity models by scaling symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    10. Subbarao, S.S.V. & Krishna Rao, K,V., 2013. "Trip Chaining Behavior in Developing Countries: A Study of Mumbai Metropolitan Region, India," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 53, pages 1-7.
    11. Jihui Ma & Cuiying Song & Avishai (Avi) Ceder & Tao Liu & Wei Guan, 2017. "Fairness in optimizing bus-crew scheduling process," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-19, November.
    12. Jingni Song & Feng Chen & Qunqi Wu & Weiyu Liu & Feiyang Xue & Kai Du, 2019. "Optimization of Passenger Transportation Corridor Mode Supply Structure in Regional Comprehensive Transport Considering Economic Equilibrium," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    13. Yong, Juan & Zheng, Linjiang & Mao, Xiaowen & Tang, Xi & Gao, Ang & Liu, Weining, 2021. "Mining metro commuting mobility patterns using massive smart card data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    14. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    15. Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
    16. Pieroni, Caio & Giannotti, Mariana & Alves, Bianca B. & Arbex, Renato, 2021. "Big data for big issues: Revealing travel patterns of low-income population based on smart card data mining in a global south unequal city," Journal of Transport Geography, Elsevier, vol. 96(C).
    17. Varga, Levente & Tóth, Géza & Néda, Zoltán, 2017. "An improved radiation model and its applicability for understanding commuting patterns in Hungary," MPRA Paper 76806, University Library of Munich, Germany.
    18. Sgrignoli, Paolo & Metulini, Rodolfo & Schiavo, Stefano & Riccaboni, Massimo, 2015. "The relation between global migration and trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 245-260.
    19. Weis, Claude & Axhausen, Kay W., 2009. "Induced travel demand: Evidence from a pseudo panel data based structural equations model," Research in Transportation Economics, Elsevier, vol. 25(1), pages 8-18.
    20. Ta, Na & Zhao, Ying & Chai, Yanwei, 2016. "Built environment, peak hours and route choice efficiency: An investigation of commuting efficiency using GPS data," Journal of Transport Geography, Elsevier, vol. 57(C), pages 161-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1764-:d:325834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.