IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0187623.html
   My bibliography  Save this article

Fairness in optimizing bus-crew scheduling process

Author

Listed:
  • Jihui Ma
  • Cuiying Song
  • Avishai (Avi) Ceder
  • Tao Liu
  • Wei Guan

Abstract

This work proposes a model considering fairness in the problem of crew scheduling for bus drivers (CSP-BD) using a hybrid ant-colony optimization (HACO) algorithm to solve it. The main contributions of this work are the following: (a) a valid approach for cases with a special cost structure and constraints considering the fairness of working time and idle time; (b) an improved algorithm incorporating Gamma heuristic function and selecting rules. The relationships of each cost are examined with ten bus lines collected from the Beijing Public Transport Holdings (Group) Co., Ltd., one of the largest bus transit companies in the world. It shows that unfair cost is indirectly related to common cost, fixed cost and extra cost and also the unfair cost approaches to common and fixed cost when its coefficient is twice of common cost coefficient. Furthermore, the longest time for the tested bus line with 1108 pieces, 74 blocks is less than 30 minutes. The results indicate that the HACO-based algorithm can be a feasible and efficient optimization technique for CSP-BD, especially with large scale problems.

Suggested Citation

  • Jihui Ma & Cuiying Song & Avishai (Avi) Ceder & Tao Liu & Wei Guan, 2017. "Fairness in optimizing bus-crew scheduling process," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-19, November.
  • Handle: RePEc:plo:pone00:0187623
    DOI: 10.1371/journal.pone.0187623
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0187623
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0187623&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0187623?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S Fores & L Proll & A Wren, 2002. "TRACS II: a hybrid IP/heuristic driver scheduling system for public transport," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(10), pages 1093-1100, October.
    2. Ma, Xiaolei & Liu, Congcong & Wen, Huimin & Wang, Yunpeng & Wu, Yao-Jan, 2017. "Understanding commuting patterns using transit smart card data," Journal of Transport Geography, Elsevier, vol. 58(C), pages 135-145.
    3. Li, Jingpeng & Kwan, Raymond S. K., 2003. "A fuzzy genetic algorithm for driver scheduling," European Journal of Operational Research, Elsevier, vol. 147(2), pages 334-344, June.
    4. Shen, Yindong & Peng, Kunkun & Chen, Kai & Li, Jingpeng, 2013. "Evolutionary crew scheduling with adaptive chromosomes," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 174-185.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rusul Abduljabbar & Hussein Dia & Sohani Liyanage & Saeed Asadi Bagloee, 2019. "Applications of Artificial Intelligence in Transport: An Overview," Sustainability, MDPI, vol. 11(1), pages 1-24, January.
    2. Jing Wang & Heqi Wang & Ande Chang & Chen Song, 2022. "Collaborative Optimization of Vehicle and Crew Scheduling for a Mixed Fleet with Electric and Conventional Buses," Sustainability, MDPI, vol. 14(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heil, Julia & Hoffmann, Kirsten & Buscher, Udo, 2020. "Railway crew scheduling: Models, methods and applications," European Journal of Operational Research, Elsevier, vol. 283(2), pages 405-425.
    2. Edmund Burke & Jingpeng Li & Rong Qu, 2012. "A Pareto-based search methodology for multi-objective nurse scheduling," Annals of Operations Research, Springer, vol. 196(1), pages 91-109, July.
    3. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    4. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    5. Feng, Tao & Lusby, Richard M. & Zhang, Yongxiang & Tao, Siyu & Zhang, Bojian & Peng, Qiyuan, 2024. "A branch-and-price algorithm for integrating urban rail crew scheduling and rostering problems," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    6. Raymond Kwan & Ann Kwan, 2007. "Effective search space control for large and/or complex driver scheduling problems," Annals of Operations Research, Springer, vol. 155(1), pages 417-435, November.
    7. Yong, Juan & Zheng, Linjiang & Mao, Xiaowen & Tang, Xi & Gao, Ang & Liu, Weining, 2021. "Mining metro commuting mobility patterns using massive smart card data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    8. Pieroni, Caio & Giannotti, Mariana & Alves, Bianca B. & Arbex, Renato, 2021. "Big data for big issues: Revealing travel patterns of low-income population based on smart card data mining in a global south unequal city," Journal of Transport Geography, Elsevier, vol. 96(C).
    9. Tong, Zhaomin & Zhang, Ziyi & An, Rui & Liu, Yaolin & Chen, Huiting & Xu, Jiwei & Fu, Shihang, 2024. "Detecting anomalous commuting patterns: Mismatch between urban land attractiveness and commuting activities," Journal of Transport Geography, Elsevier, vol. 116(C).
    10. Ma, Zhenliang & Koutsopoulos, Haris N. & Liu, Tianyou & Basu, Abhishek Arunasis, 2020. "Behavioral response to promotion-based public transport demand management: Longitudinal analysis and implications for optimal promotion design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 356-372.
    11. Wang, Yihong & Correia, Gonçalo Homem de Almeida & de Romph, Erik & Timmermans, H.J.P., 2017. "Using metro smart card data to model location choice of after-work activities: An application to Shanghai," Journal of Transport Geography, Elsevier, vol. 63(C), pages 40-47.
    12. Chen, Wendong & Cheng, Long & Chen, Xuewu & Chen, Jingxu & Cao, Mengqiu, 2021. "Measuring accessibility to health care services for older bus passengers: A finer spatial resolution," Journal of Transport Geography, Elsevier, vol. 93(C).
    13. Fuentes, Manuel & Cadarso, Luis & Marín, Ángel, 2019. "A hybrid model for crew scheduling in rail rapid transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 248-265.
    14. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    15. Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.
    16. Zwick, Felix & Kuehnel, Nico & Hörl, Sebastian, 2022. "Shifts in perspective: Operational aspects in (non-)autonomous ride-pooling simulations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 300-320.
    17. Wang, Jing & Wan, Feng & Dong, Chunjiao & Yin, Chaoying & Chen, Xiaoyu, 2023. "Spatiotemporal effects of built environment factors on varying rail transit station ridership patterns," Journal of Transport Geography, Elsevier, vol. 109(C).
    18. Lin, Zhiyuan & Kwan, Raymond S.K., 2016. "A branch-and-price approach for solving the train unit scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 97-120.
    19. Shyam S. G. Perumal & Jesper Larsen & Richard M. Lusby & Morten Riis & Tue R. L. Christensen, 2022. "A column generation approach for the driver scheduling problem with staff cars," Public Transport, Springer, vol. 14(3), pages 705-738, October.
    20. Hainan Huang & Yi Lin & Jiancheng Weng & Jian Rong & Xiaoming Liu, 2018. "Identification of Inelastic Subway Trips Based on Weekly Station Sequence Data: An Example from the Beijing Subway," Sustainability, MDPI, vol. 10(12), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0187623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.