IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p986-d314312.html
   My bibliography  Save this article

Study of the Effects of Vent Configuration on Mono-Span Greenhouse Ventilation Using Computational Fluid Dynamics

Author

Listed:
  • Mohammad Akrami

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Akbar A. Javadi

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Matthew J. Hassanein

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Raziyeh Farmani

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Mahdieh Dibaj

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Gavin R. Tabor

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

  • Abdelazim Negm

    (Water and Water structures Engineering Department, Faculty of Engineering, Zagazig University, Zagaizg 44519, Egypt)

Abstract

The rise in the human population, its density and scarcity of resources require cost-effective solutions for sustainable energy and water resources. Smart and sustainable agriculture is one important factor for future green cities to tackle climate change as a cost-effective solution to save energy and water. However, greenhouses (GH) require consistent ventilation due to their internal temperatures, and this can be an energy-intensive operation. Therefore, it is necessary to analyse the potential factors involved. In this study, the effect of vent configuration of a mono-span greenhouse with roof and side vents at low wind speeds was investigated using computational fluid dynamics (CFD). The validated simulations were then performed on different models to analyse the effects of the vents’ locations on the ventilation requirements. The side vents were found to contribute most to the ventilation. The position of the side vent was found to affect the convection loop in the greenhouse and the air velocity at the plant level. The humidity was shown to be highest under the windward side vent. The roof vent was found to affect the temperature and air velocity in the roof of the greenhouse but had very little effect on the distributions at the plant level.

Suggested Citation

  • Mohammad Akrami & Akbar A. Javadi & Matthew J. Hassanein & Raziyeh Farmani & Mahdieh Dibaj & Gavin R. Tabor & Abdelazim Negm, 2020. "Study of the Effects of Vent Configuration on Mono-Span Greenhouse Ventilation Using Computational Fluid Dynamics," Sustainability, MDPI, vol. 12(3), pages 1-26, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:986-:d:314312
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/986/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/986/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aref Arfaei & Polat Hançer, 2019. "Effect of the Built Environment on Natural Ventilation in a Historical Environment: Case of the Walled City of Famagusta," Sustainability, MDPI, vol. 11(21), pages 1-17, October.
    2. El-Ghonemy, A.M.K., 2012. "Future sustainable water desalination technologies for the Saudi Arabia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6566-6597.
    3. Jiying Liu & Mohammad Heidarinejad & Saber Khoshdel Nikkho & Nicholas W. Mattise & Jelena Srebric, 2019. "Quantifying Impacts of Urban Microclimate on a Building Energy Consumption—A Case Study," Sustainability, MDPI, vol. 11(18), pages 1-21, September.
    4. Gebreslassie, Mulualem G. & Tabor, Gavin R. & Belmont, Michael R., 2015. "Investigation of the performance of a staggered configuration of tidal turbines using CFD," Renewable Energy, Elsevier, vol. 80(C), pages 690-698.
    5. Eliseo Bustamante & Fernando-Juan García-Diego & Salvador Calvet & Antonio G. Torres & Antonio Hospitaler, 2015. "Measurement and Numerical Simulation of Air Velocity in a Tunnel-Ventilated Broiler House," Sustainability, MDPI, vol. 7(2), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edwin Villagran & Carlos Bojacá & Mohammad Akrami, 2021. "Contribution to the Sustainability of Agricultural Production in Greenhouses Built on Slope Soils: A Numerical Study of the Microclimatic Behavior of a Typical Colombian Structure," Sustainability, MDPI, vol. 13(9), pages 1-22, April.
    2. Gloria Alexandra Ortiz Rocha & Maria Angelica Pichimata & Edwin Villagran, 2021. "Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping," Sustainability, MDPI, vol. 13(18), pages 1-40, September.
    3. Chrysanthos Maraveas & Christos-Spyridon Karavas & Dimitrios Loukatos & Thomas Bartzanas & Konstantinos G. Arvanitis & Eleni Symeonaki, 2023. "Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions," Agriculture, MDPI, vol. 13(7), pages 1-46, July.
    4. Mohammad Akrami & Alaa H. Salah & Akbar A. Javadi & Hassan E.S. Fath & Matthew J. Hassanein & Raziyeh Farmani & Mahdieh Dibaj & Abdelazim Negm, 2020. "Towards a Sustainable Greenhouse: Review of Trends and Emerging Practices in Analysing Greenhouse Ventilation Requirements to Sustain Maximum Agricultural Yield," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    5. Edwin Villagran & Rommel Leon & Andrea Rodriguez & Jorge Jaramillo, 2020. "3D Numerical Analysis of the Natural Ventilation Behavior in a Colombian Greenhouse Established in Warm Climate Conditions," Sustainability, MDPI, vol. 12(19), pages 1-27, October.
    6. Hassan A. Awaad & Elsayed Mansour & Mohammad Akrami & Hassan E.S. Fath & Akbar A. Javadi & Abdelazim Negm, 2020. "Availability and Feasibility of Water Desalination as a Non-Conventional Resource for Agricultural Irrigation in the MENA Region: A Review," Sustainability, MDPI, vol. 12(18), pages 1-14, September.
    7. Edwin Villagrán & Jorge Flores-Velazquez & Mohammad Akrami & Carlos Bojacá, 2021. "Influence of the Height in a Colombian Multi-Tunnel Greenhouse on Natural Ventilation and Thermal Behavior: Modeling Approach," Sustainability, MDPI, vol. 13(24), pages 1-26, December.
    8. Mohammad Akrami & Can Dogan Mutlum & Akbar A. Javadi & Alaa H. Salah & Hassan E. S. Fath & Mahdieh Dibaj & Raziyeh Farmani & Ramy H. Mohammed & Abdelazim Negm, 2021. "Analysis of Inlet Configurations on the Microclimate Conditions of a Novel Standalone Agricultural Greenhouse for Egypt Using Computational Fluid Dynamics," Sustainability, MDPI, vol. 13(3), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yidan & Shek, Jonathan K.H. & Mueller, Markus A., 2023. "Controller design for a tidal turbine array, considering both power and loads aspects," Renewable Energy, Elsevier, vol. 216(C).
    2. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    3. Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.
    4. Sutherland, Duncan & Ordonez-Sanchez, Stephanie & Belmont, Michael R. & Moon, Ian & Steynor, Jeffrey & Davey, Thomas & Bruce, Tom, 2018. "Experimental optimisation of power for large arrays of cross-flow tidal turbines," Renewable Energy, Elsevier, vol. 116(PA), pages 685-696.
    5. Shiyi Song & Hong Leng & Han Xu & Ran Guo & Yan Zhao, 2020. "Impact of Urban Morphology and Climate on Heating Energy Consumption of Buildings in Severe Cold Regions," IJERPH, MDPI, vol. 17(22), pages 1-24, November.
    6. Garcia-Oliva, Miriam & Djordjević, Slobodan & Tabor, Gavin R., 2017. "The influence of channel geometry on tidal energy extraction in estuaries," Renewable Energy, Elsevier, vol. 101(C), pages 514-525.
    7. Mendes, Rafael C.F. & Chapui, Benoit & Oliveira, Taygoara F. & Noguera, Ricardo & Brasil, Antonio C.P., 2024. "Flow through horizontal axis propeller turbines in a triangular array," Renewable Energy, Elsevier, vol. 220(C).
    8. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud & Sadeghi, Zeinolabedin, 2017. "Solar photovoltaic power plants in five top oil-producing countries in Middle East: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1271-1280.
    9. Van Thinh Nguyen & Alina Santa Cruz & Sylvain S. Guillou & Mohamad N. Shiekh Elsouk & Jérôme Thiébot, 2019. "Effects of the Current Direction on the Energy Production of a Tidal Farm: The Case of Raz Blanchard (France)," Energies, MDPI, vol. 12(13), pages 1-20, June.
    10. Lo Brutto, Ottavio A. & Thiébot, Jérôme & Guillou, Sylvain S. & Gualous, Hamid, 2016. "A semi-analytic method to optimize tidal farm layouts – Application to the Alderney Race (Raz Blanchard), France," Applied Energy, Elsevier, vol. 183(C), pages 1168-1180.
    11. du Feu, R.J. & Funke, S.W. & Kramer, S.C. & Culley, D.M. & Hill, J. & Halpern, B.S. & Piggott, M.D., 2017. "The trade-off between tidal-turbine array yield and impact on flow: A multi-objective optimisation problem," Renewable Energy, Elsevier, vol. 114(PB), pages 1247-1257.
    12. Gauvin-Tremblay, Olivier & Dumas, Guy, 2022. "Hydrokinetic turbine array analysis and optimization integrating blockage effects and turbine-wake interactions," Renewable Energy, Elsevier, vol. 181(C), pages 851-869.
    13. Salata, F. & Coppi, M., 2014. "A first approach study on the desalination of sea water using heat transformers powered by solar ponds," Applied Energy, Elsevier, vol. 136(C), pages 611-618.
    14. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    15. Bundschuh, Jochen & Ghaffour, Noreddine & Mahmoudi, Hacene & Goosen, Mattheus & Mushtaq, Shahbaz & Hoinkis, Jan, 2015. "Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 196-206.
    16. Lin, Xiaojie & Zhang, Junwei & Du-Ikonen, Liuliu & Zhong, Wei, 2023. "An infiltration load calculation model of large-space buildings based on the grand canonical ensemble theory," Energy, Elsevier, vol. 275(C).
    17. Roya Aeinehvand & Amiraslan Darvish & Abdollah Baghaei Daemei & Shima Barati & Asma Jamali & Vahid Malekpour Ravasjan, 2021. "Proposing Alternative Solutions to Enhance Natural Ventilation Rates in Residential Buildings in the Cfa Climate Zone of Rasht," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    18. Yang, Zhixue & Ren, Zhouyang & Li, Hui & Pan, Zhen & Xia, Weiyi, 2024. "A review of tidal current power generation farm planning: Methodologies, characteristics and challenges," Renewable Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:986-:d:314312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.