IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p876-d312709.html
   My bibliography  Save this article

An Ensemble Framework to Investigate Wind Energy Sustainability Considering Climate Change Impacts

Author

Listed:
  • Shengjin Wang

    (Northeast Asia Research Institute, Jilin University, Changchun 130012, China)

  • Hongru Yang

    (Northeast Asia Research Institute, Jilin University, Changchun 130012, China)

  • Quoc Bao Pham

    (Department of Hydraulic and Ocean Engineering, National Cheng-Kung University, Tainan 701, Taiwan)

  • Dao Nguyen Khoi

    (Faculty of Environment, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam)

  • Pham Thi Thao Nhi

    (Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam)

Abstract

Wind power is a key element for future renewable energy resources and plays a vital role in sustainable development. Global warming and future climate conditions are going to impact many atmospheric, oceanic, and earth systems. In this study, impacts of climate change on wind power resources under future climatic conditions are evaluated for the Persian Gulf to explore the sustainability of this kind of energy for present and future developments. To that end, three regional climate models obtained from coordinated regional downscaling experiment (CRODEX), including daily simulations of near-surface wind speeds for a 20-year period in the present and future, were considered. Prior to computing the wind power at turbine hub-height, historical simulations of CORDEX were evaluated versus ERA-Interim wind outputs to determine the accuracy of the regional climate models. An attempt was made to build an ensemble model from available models by assigning weights to the models based on their merits. Subsequently, the wind power at the turbine hub-height was computed for historical and future periods to detect the impacts of climate change. Some points with a relatively high energy potential were selected as energy hotspots for further investigations. The results revealed that the mean annual wind power over the study area changed remarkably, which is of great importance for sustainable developments. Moreover, the results of the directional investigations showed roughly the same directional distribution for the future period as the past.

Suggested Citation

  • Shengjin Wang & Hongru Yang & Quoc Bao Pham & Dao Nguyen Khoi & Pham Thi Thao Nhi, 2020. "An Ensemble Framework to Investigate Wind Energy Sustainability Considering Climate Change Impacts," Sustainability, MDPI, vol. 12(3), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:876-:d:312709
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/876/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/876/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amirinia, Gholamreza & Kamranzad, Bahareh & Mafi, Somayeh, 2017. "Wind and wave energy potential in southern Caspian Sea using uncertainty analysis," Energy, Elsevier, vol. 120(C), pages 332-345.
    2. Terrence Manyeredzi & Golden Makaka, 2018. "An Assessment of the Wind Power Generation Potential of Built Environment Wind Turbine (BEWT) Systems in Fort Beaufort, South Africa," Sustainability, MDPI, vol. 10(5), pages 1-9, April.
    3. Davy, Richard & Gnatiuk, Natalia & Pettersson, Lasse & Bobylev, Leonid, 2018. "Climate change impacts on wind energy potential in the European domain with a focus on the Black Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1652-1659.
    4. Alain Ulazia & Ander Nafarrate & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia, 2019. "The Consequences of Air Density Variations over Northeastern Scotland for Offshore Wind Energy Potential," Energies, MDPI, vol. 12(13), pages 1-18, July.
    5. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    6. Alain Ulazia & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia & Santos J. González-Rojí, 2019. "Seasonal Correction of Offshore Wind Energy Potential due to Air Density: Case of the Iberian Peninsula," Sustainability, MDPI, vol. 11(13), pages 1-22, July.
    7. Chang, Tsang-Jung & Wu, Yu-Ting & Hsu, Hua-Yi & Chu, Chia-Ren & Liao, Chun-Min, 2003. "Assessment of wind characteristics and wind turbine characteristics in Taiwan," Renewable Energy, Elsevier, vol. 28(6), pages 851-871.
    8. Fernando Porté-Agel & Yu-Ting Wu & Chang-Hung Chen, 2013. "A Numerical Study of the Effects of Wind Direction on Turbine Wakes and Power Losses in a Large Wind Farm," Energies, MDPI, vol. 6(10), pages 1-17, October.
    9. Sadik Kucuksari & Nuh Erdogan & Umit Cali, 2019. "Impact of Electrical Topology, Capacity Factor and Line Length on Economic Performance of Offshore Wind Investments," Energies, MDPI, vol. 12(16), pages 1-21, August.
    10. Hegazy Rezk & Ahmed Fathy & Ahmed A. Zaki Diab & Mujahed Al-Dhaifallah, 2019. "The Application of Water Cycle Optimization Algorithm for Optimal Placement of Wind Turbines in Wind Farms," Energies, MDPI, vol. 12(22), pages 1-19, November.
    11. Kyoungboo Yang & Kyungho Cho, 2019. "Simulated Annealing Algorithm for Wind Farm Layout Optimization: A Benchmark Study," Energies, MDPI, vol. 12(23), pages 1-15, November.
    12. John Warnock & David McMillan & James Pilgrim & Sally Shenton, 2019. "Failure Rates of Offshore Wind Transmission Systems," Energies, MDPI, vol. 12(14), pages 1-12, July.
    13. Adriana Florescu & Sorin Barabas & Tiberiu Dobrescu, 2019. "Research on Increasing the Performance of Wind Power Plants for Sustainable Development," Sustainability, MDPI, vol. 11(5), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanieh Seyedhashemi & Benoît Hingray & Christophe Lavaysse & Théo Chamarande, 2021. "The Impact of Low-Resource Periods on the Reliability of Wind Power Systems for Rural Electrification in Africa," Energies, MDPI, vol. 14(11), pages 1-18, May.
    2. Jung, Christopher & Schindler, Dirk, 2022. "A review of recent studies on wind resource projections under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Cristian Velandia-Cardenas & Yolanda Vidal & Francesc Pozo, 2021. "Wind Turbine Fault Detection Using Highly Imbalanced Real SCADA Data," Energies, MDPI, vol. 14(6), pages 1-26, March.
    4. Nagababu, Garlapati & Srinivas, Bhasuru Abhinaya & Kachhwaha, Surendra Singh & Puppala, Harish & Kumar, Surisetty V.V.Arun, 2023. "Can offshore wind energy help to attain carbon neutrality amid climate change? A GIS-MCDM based analysis to unravel the facts using CORDEX-SA," Renewable Energy, Elsevier, vol. 219(P1).
    5. Boadu, Solomon & Otoo, Ebenezer, 2024. "A comprehensive review on wind energy in Africa: Challenges, benefits and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alain Ulazia & Gabriel Ibarra-Berastegi, 2020. "Problem-Based Learning in University Studies on Renewable Energies: Case of a Laboratory Windpump," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    2. Işık, Cem & Kuziboev, Bekhzod & Ongan, Serdar & Saidmamatov, Olimjon & Mirkhoshimova, Mokhirakhon & Rajabov, Alibek, 2024. "The volatility of global energy uncertainty: Renewable alternatives," Energy, Elsevier, vol. 297(C).
    3. Nie, Bingchuan & Li, Jiachun, 2018. "Technical potential assessment of offshore wind energy over shallow continent shelf along China coast," Renewable Energy, Elsevier, vol. 128(PA), pages 391-399.
    4. Giovanni Gualtieri, 2021. "Reliability of ERA5 Reanalysis Data for Wind Resource Assessment: A Comparison against Tall Towers," Energies, MDPI, vol. 14(14), pages 1-21, July.
    5. Muhammad Nabeel Hussain & Nadeem Shaukat & Ammar Ahmad & Muhammad Abid & Abrar Hashmi & Zohreh Rajabi & Muhammad Atiq Ur Rehman Tariq, 2022. "Effective Realization of Multi-Objective Elitist Teaching–Learning Based Optimization Technique for the Micro-Siting of Wind Turbines," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    6. Jinjing An & Guoping Chen & Zhuo Zou & Yaojie Sun & Ran Liu & Lirong Zheng, 2021. "An IoT-Based Traceability Platform for Wind Turbines," Energies, MDPI, vol. 14(9), pages 1-17, May.
    7. Wu, Chunlei & Luo, Kun & Wang, Qiang & Fan, Jianren, 2022. "A refined wind farm parameterization for the weather research and forecasting model," Applied Energy, Elsevier, vol. 306(PB).
    8. Carreno-Madinabeitia, Sheila & Ibarra-Berastegi, Gabriel & Sáenz, Jon & Ulazia, Alain, 2021. "Long-term changes in offshore wind power density and wind turbine capacity factor in the Iberian Peninsula (1900–2010)," Energy, Elsevier, vol. 226(C).
    9. Maddi Aizpurua-Etxezarreta & Sheila Carreno-Madinabeitia & Alain Ulazia & Jon Sáenz & Aitor Saenz-Aguirre, 2022. "Long-Term Freezing Temperatures Frequency Change Effect on Wind Energy Gain (Eurasia and North America, 1950–2019)," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
    10. Salcedo-Sanz, S. & García-Herrera, R. & Camacho-Gómez, C. & Aybar-Ruíz, A. & Alexandre, E., 2018. "Wind power field reconstruction from a reduced set of representative measuring points," Applied Energy, Elsevier, vol. 228(C), pages 1111-1121.
    11. Mahmoodi, Kumars & Ghassemi, Hassan & Razminia, Abolhassan, 2019. "Temporal and spatial characteristics of wave energy in the Persian Gulf based on the ERA5 reanalysis dataset," Energy, Elsevier, vol. 187(C).
    12. de Araujo Lima, Laerte & Bezerra Filho, Celso Rosendo, 2010. "Wind energy assessment and wind farm simulation in Triunfo – Pernambuco, Brazil," Renewable Energy, Elsevier, vol. 35(12), pages 2705-2713.
    13. Eskin, N. & Artar, H. & Tolun, S., 2008. "Wind energy potential of Gökçeada Island in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 839-851, April.
    14. Escobar, A. & Negro, V. & López-Gutiérrez, J.S. & Esteban, M.D., 2019. "Assessment of the influence of the acceleration field on scour phenomenon in offshore wind farms," Renewable Energy, Elsevier, vol. 136(C), pages 1036-1043.
    15. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    16. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    17. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    18. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.
    19. Deveci, Muhammet & Cali, Umit & Kucuksari, Sadik & Erdogan, Nuh, 2020. "Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland," Energy, Elsevier, vol. 198(C).
    20. Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2019. "Improving CFD wind farm simulations incorporating wind direction uncertainty," Renewable Energy, Elsevier, vol. 133(C), pages 1011-1023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:876-:d:312709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.