IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p791-d311568.html
   My bibliography  Save this article

Peaking Industrial Energy-Related CO 2 Emissions in Typical Transformation Region: Paths and Mechanism

Author

Listed:
  • Zhiyuan Duan

    (Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
    College of New Energy and Environment, Jilin University, Changchun 130021, China)

  • Xian’en Wang

    (Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
    College of New Energy and Environment, Jilin University, Changchun 130021, China)

  • Xize Dong

    (Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
    College of New Energy and Environment, Jilin University, Changchun 130021, China)

  • Haiyan Duan

    (Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
    College of New Energy and Environment, Jilin University, Changchun 130021, China)

  • Junnian Song

    (Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
    College of New Energy and Environment, Jilin University, Changchun 130021, China)

Abstract

Reducing CO 2 emissions of industrial energy consumption plays a significant role in achieving the goal of CO 2 emissions peak and decreasing total CO 2 emissions in northeast China. This study proposed an extended STIRPAT model to predict CO 2 emissions peak of industrial energy consumption in Jilin Province under the four scenarios (baseline scenario (BAU), energy-saving scenario (ESS), energy-saving and low-carbon scenario (ELS), and low-carbon scenario (LCS)). We analyze the influences of various factors on the peak time and values of CO 2 emissions and explore the reduction path and mechanism to achieve CO 2 emissions peak in industrial energy consumption. The results show that the peak time of the four scenarios is respectively 2026, 2030, 2035 and 2043, and the peak values are separately 147.87 million tons, 16.94 million tons, 190.89 million tons and 22.973 million tons. Due to conforming to the general disciplines of industrial development, the result in ELS is selected as the optimal scenario. The impact degrees of various factors on the peak value are listed as industrial CO 2 emissions efficiency of energy consumption > industrialized rate > GDP > urbanization rate > industrial energy intensity > the share of renewable energy consumption. But not all factors affect the peak time. Only two factors including industrial clean-coal and low-carbon technology and industrialized rate do effect on the peak time. Clean coal technology, low carbon technology and industrial restructuring have become inevitable choices to peak ahead of time. However, developing clean coal and low-carbon technologies, adjusting the industrial structure, promoting the upgrading of the industrial structure and reducing the growth rate of industrialization can effectively reduce the peak value. Then, the pathway and mechanism to reducing industrial carbon emissions were proposed under different scenarios. The approach and the pathway and mechanism are expected to offer better decision support to targeted carbon emission peak in northeast of China.

Suggested Citation

  • Zhiyuan Duan & Xian’en Wang & Xize Dong & Haiyan Duan & Junnian Song, 2020. "Peaking Industrial Energy-Related CO 2 Emissions in Typical Transformation Region: Paths and Mechanism," Sustainability, MDPI, vol. 12(3), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:791-:d:311568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/791/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/791/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haiyan Duan & Shipei Zhang & Siying Duan & Weicheng Zhang & Zhiyuan Duan & Shuo Wang & Junnian Song & Xian’en Wang, 2019. "Carbon Emissions Peak Prediction and the Reduction Pathway in Buildings during Operation in Jilin Province Based on LEAP," Sustainability, MDPI, vol. 11(17), pages 1-23, August.
    2. Shuai, Chenyang & Shen, Liyin & Jiao, Liudan & Wu, Ya & Tan, Yongtao, 2017. "Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011," Applied Energy, Elsevier, vol. 187(C), pages 310-325.
    3. Yu, Shiwei & Zheng, Shuhong & Li, Xia & Li, Longxi, 2018. "China can peak its energy-related carbon emissions before 2025: Evidence from industry restructuring," Energy Economics, Elsevier, vol. 73(C), pages 91-107.
    4. Mingxiang Deng & Wei Li & Yan Hu, 2016. "Decomposing Industrial Energy-Related CO 2 Emissions in Yunnan Province, China: Switching to Low-Carbon Economic Growth," Energies, MDPI, vol. 9(1), pages 1-19, January.
    5. Zhang, Ning & Yu, Keren & Chen, Zhongfei, 2017. "How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis," Energy Policy, Elsevier, vol. 107(C), pages 678-687.
    6. Lei Liu & Ke Wang & Shanshan Wang & Ruiqin Zhang & Xiaoyan Tang, 2019. "Exploring the Driving Forces and Reduction Potential of Industrial Energy-Related CO 2 Emissions during 2001–2030: A Case Study for Henan Province, China," Sustainability, MDPI, vol. 11(4), pages 1-25, February.
    7. Lei Tian & Zhe Ding & Yongxuan Wang & Haiyan Duan & Shuo Wang & Jie Tang & Xian’en Wang, 2016. "Analysis of the Driving Factors and Contributions to Carbon Emissions of Energy Consumption from the Perspective of the Peak Volume and Time Based on LEAP," Sustainability, MDPI, vol. 8(6), pages 1-17, May.
    8. Rina Wu & Jiquan Zhang & Yuhai Bao & Quan Lai & Siqin Tong & Youtao Song, 2016. "Decomposing the Influencing Factors of Industrial Sector Carbon Dioxide Emissions in Inner Mongolia Based on the LMDI Method," Sustainability, MDPI, vol. 8(7), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    2. Lars Sorge & Anne Neumann, 2019. "The Impact of Population, Affluence, Technology, and Urbanization on CO2 Emissions across Income Groups," Discussion Papers of DIW Berlin 1812, DIW Berlin, German Institute for Economic Research.
    3. Jian Liu & Qingshan Yang & Yu Zhang & Wen Sun & Yiming Xu, 2019. "Analysis of CO 2 Emissions in China’s Manufacturing Industry Based on Extended Logarithmic Mean Division Index Decomposition," Sustainability, MDPI, vol. 11(1), pages 1-28, January.
    4. Fuzhong Chen & Muzzammil Hussain & Jawad Ahmad Khan & Ghulam Mustafa Mir & Zeeshan Khan, 2021. "Voluntary disclosure of greenhouse gas emissions by cities under carbon disclosure project: A sustainable development approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 719-727, July.
    5. Jingxue Zhang & Yanchao Feng & Ziyi Zhu, 2022. "Spatio-Temporal Heterogeneity of Carbon Emissions and Its Key Influencing Factors in the Yellow River Economic Belt of China from 2006 to 2019," IJERPH, MDPI, vol. 19(7), pages 1-16, March.
    6. Xuecheng Wang & Xu Tang & Zhenhua Feng & Yi Zhang, 2019. "Characterizing the Embodied Carbon Emissions Flows and Ecological Relationships among Four Chinese Megacities and Other Provinces," Sustainability, MDPI, vol. 11(9), pages 1-19, May.
    7. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    8. Jikun Jiang & Shenglai Zhu & Weihao Wang, 2022. "Carbon Emissions, Economic Growth, Urbanization, and Foreign Trade in China: Empirical Evidence from ARDL Models," Sustainability, MDPI, vol. 14(15), pages 1-15, August.
    9. Li, Kunming & Fang, Liting & He, Lerong, 2019. "How population and energy price affect China's environmental pollution?," Energy Policy, Elsevier, vol. 129(C), pages 386-396.
    10. Kangyin Dong & Yalin Han & Yue Dou & Muhammad Shahbaz, 2022. "Moving toward carbon neutrality: Assessing natural gas import security and its impact on CO2 emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 751-770, August.
    11. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    12. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    13. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    14. Yanyan Ke & Lu Zhou & Minglei Zhu & Yan Yang & Rui Fan & Xianrui Ma, 2023. "Scenario Prediction of Carbon Emission Peak of Urban Residential Buildings in China’s Coastal Region: A Case of Fujian Province," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    15. Gudipudi, Ramana & Rybski, Diego & Lüdeke, Matthias K.B. & Zhou, Bin & Liu, Zhu & Kropp, Jürgen P., 2019. "The efficient, the intensive, and the productive: Insights from urban Kaya scaling," Applied Energy, Elsevier, vol. 236(C), pages 155-162.
    16. Lizhan Cao & Hui Wang, 2022. "The Slowdown in China’s Energy Consumption Growth in the “New Normal” Stage: From Both National and Regional Perspectives," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    17. Jun Bai & Shixiang Li & Nan Wang & Jianru Shi & Xianmin Li, 2020. "Spatial Spillover Effect of New Energy Development on Economic Growth in Developing Areas of China—An Empirical Test Based on the Spatial Dubin Model," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    18. Elvis D. Achuo & Pilag B.C. Kakeu & Simplice A. Asongu, 2023. "Financial development, human capital and energy transition: A global comparative analysis," Working Papers 23/005, European Xtramile Centre of African Studies (EXCAS).
    19. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    20. Zeng, Lijun & Zhao, Yue & Wang, Xilian, 2022. "How to develop the new urbanization in mineral resources abundant regions in China? A VIKOR-based path matching model," Resources Policy, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:791-:d:311568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.