IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i2p453-d305993.html
   My bibliography  Save this article

Creation and Diversified Applications of Plane Module Libraries for Prefabricated Houses Based on BIM

Author

Listed:
  • Yanqiu Cui

    (School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan 250101, China)

  • Simeng Li

    (School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan 250101, China
    School of Architecture and Built Environment, Deakin University, Geelong 3220, Australia)

  • Chunlu Liu

    (School of Architecture and Built Environment, Deakin University, Geelong 3220, Australia)

  • Ninghan Sun

    (School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan 250101, China)

Abstract

In recent years, due to the advantages of high construction efficiency and less environmental pollution, prefabricated housing has been of increasing interest and vigorously promoted. However at present, most prefabricated houses simply pursue an increase in assembly rate, and the floor plan design still continues to follow the traditional design method of housing, which does not meet the requirements of industrialization and cannot achieve the goal of product diversification. This paper puts forward a method for floor plan designs of prefabricated houses whose core is building plane module libraries. The modules in module libraries all conform to standardized and refined designs. A new residential floor plan can be obtained by selecting and recombining modules in module libraries. The richer the module library, the more diverse the results will be under the same combinatorial logic, which can greatly improve design efficiency. In addition, this paper probes the method of creation and applications of plane module libraries in detail, so as to provide a new idea for floor plan designs of prefabricated houses. This research is of great significance for improving the efficiency of floor plan design of prefabricated housing and realizing goals of standardization and diversification of prefabricated housing development.

Suggested Citation

  • Yanqiu Cui & Simeng Li & Chunlu Liu & Ninghan Sun, 2020. "Creation and Diversified Applications of Plane Module Libraries for Prefabricated Houses Based on BIM," Sustainability, MDPI, vol. 12(2), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:453-:d:305993
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/2/453/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/2/453/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuan Qi & Siwei Chang & Yingbo Ji & Kai Qi, 2018. "BIM-Based Incremental Cost Analysis Method of Prefabricated Buildings in China," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    2. Chris Goodier & Alistair Gibb, 2007. "Future opportunities for offsite in the UK," Construction Management and Economics, Taylor & Francis Journals, vol. 25(6), pages 585-595.
    3. Fred Edmond Boafo & Jin-Hee Kim & Jun-Tae Kim, 2016. "Performance of Modular Prefabricated Architecture: Case Study-Based Review and Future Pathways," Sustainability, MDPI, vol. 8(6), pages 1-16, June.
    4. Fabrizio M. Amoruso & Udo Dietrich & Thorsten Schuetze, 2019. "Indoor Thermal Comfort Improvement through the Integrated BIM-Parametric Workflow-Based Sustainable Renovation of an Exemplary Apartment in Seoul, Korea," Sustainability, MDPI, vol. 11(14), pages 1-31, July.
    5. Kamali, Mohammad & Hewage, Kasun, 2016. "Life cycle performance of modular buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1171-1183.
    6. Fabrizio M. Amoruso & Udo Dietrich & Thorsten Schuetze, 2019. "Integrated BIM-Parametric Workflow-Based Analysis of Daylight Improvement for Sustainable Renovation of an Exemplary Apartment in Seoul, Korea," Sustainability, MDPI, vol. 11(9), pages 1-29, May.
    7. Joosung Lee & Jaejun Kim, 2017. "BIM-Based 4D Simulation to Improve Module Manufacturing Productivity for Sustainable Building Projects," Sustainability, MDPI, vol. 9(3), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simeng Li & Yanqiu Cui & Nerija Banaitienė & Chunlu Liu & Mark B. Luther, 2021. "Sensitivity Analysis for Carbon Emissions of Prefabricated Residential Buildings with Window Design Elements," Energies, MDPI, vol. 14(19), pages 1-25, October.
    2. Yanwu Xiao & Jyoti Bhola, 2022. "Design and optimization of prefabricated building system based on BIM technology," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 111-120, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. López-Guerrero, Rafael E. & Vera, Sergio & Carpio, Manuel, 2022. "A quantitative and qualitative evaluation of the sustainability of industrialised building systems: A bibliographic review and analysis of case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Yongsheng Jiang & Dong Zhao & Dedong Wang & Yudong Xing, 2019. "Sustainable Performance of Buildings through Modular Prefabrication in the Construction Phase: A Comparative Study," Sustainability, MDPI, vol. 11(20), pages 1-15, October.
    3. Chris Turner & John Oyekan & Lampros K. Stergioulas, 2021. "Distributed Manufacturing: A New Digital Framework for Sustainable Modular Construction," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
    4. Yu, Sisi & Liu, Yanfeng & Wang, Dengjia & Bahaj, AbuBakr S. & Wu, Yue & Liu, Jiaping, 2021. "Review of thermal and environmental performance of prefabricated buildings: Implications to emission reductions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Andrew Agapiou, 2021. "An Exploration of the Best Value Perceptions of Small Housebuilding Developers towards Offsite Construction," Sustainability, MDPI, vol. 13(7), pages 1-19, April.
    6. Giuseppe Desogus & Emanuela Quaquero & Giulia Rubiu & Gianluca Gatto & Cristian Perra, 2021. "BIM and IoT Sensors Integration: A Framework for Consumption and Indoor Conditions Data Monitoring of Existing Buildings," Sustainability, MDPI, vol. 13(8), pages 1-22, April.
    7. Marina Marinelli & Ashwini Konanahalli & Rupesh Dwarapudi & Mukund Janardhanan, 2022. "Assessment of Barriers and Strategies for the Enhancement of Off-Site Construction in India: An ISM Approach," Sustainability, MDPI, vol. 14(11), pages 1-20, May.
    8. Ruwini Edirisinghe & Zelinna Pablo & Chimay Anumba & Saratu Tereno, 2021. "An Actor–Network Approach to Developing a Life Cycle BIM Maturity Model (LCBMM)," Sustainability, MDPI, vol. 13(23), pages 1-25, November.
    9. Yang Liu & Jianjun Dong & Ling Shen, 2020. "A Conceptual Development Framework for Prefabricated Construction Supply Chain Management: An Integrated Overview," Sustainability, MDPI, vol. 12(5), pages 1-29, March.
    10. Zahraa Alshikh & Esra Trepci & Edwin Rodriguez-Ubinas, 2023. "Sustainable Off-Site Construction in Desert Environments: Zero-Energy Houses as Case Studies," Sustainability, MDPI, vol. 15(15), pages 1-40, August.
    11. Hosang Hyun & Hyunsoo Kim & Hyun-Soo Lee & Moonseo Park & Jeonghoon Lee, 2020. "Integrated Design Process for Modular Construction Projects to Reduce Rework," Sustainability, MDPI, vol. 12(2), pages 1-19, January.
    12. Wei Ma & Yue Li & Kewei Ding & Baoquan Cheng & Jianhua Liu & Jianli Hao & Vivian Wing Yan Tam, 2019. "Mechanical Properties of New Dry-Type Beam-Column Bolt Connection Joint," Sustainability, MDPI, vol. 11(12), pages 1-14, June.
    13. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    14. Zezhou Wu & Changhong Chen & Yuzhu Cai & Chen Lu & Hao Wang & Tao Yu, 2019. "BIM-Based Visualization Research in the Construction Industry: A Network Analysis," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    15. Lei Jiang & Zhongfu Li & Long Li & Yunli Gao, 2018. "Constraints on the Promotion of Prefabricated Construction in China," Sustainability, MDPI, vol. 10(7), pages 1, July.
    16. Satheeskumar Navaratnam, 2022. "Selecting a Suitable Sustainable Construction Method for Australian High-Rise Building: A Multi-Criteria Analysis," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    17. Pei Dang & Zhanwen Niu & Shang Gao & Lei Hou & Guomin Zhang, 2020. "Critical Factors Influencing the Sustainable Construction Capability in Prefabrication of Chinese Construction Enterprises," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    18. Kim, Rakhyun & Tae, Sungho & Roh, Seungjun, 2017. "Development of low carbon durability design for green apartment buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 263-272.
    19. Craig Langston & Weiwei Zhang, 2021. "DfMA: Towards an Integrated Strategy for a More Productive and Sustainable Construction Industry in Australia," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    20. Yasser Yahya Al-Ashmori & Idris Othman & Al-Hussein M. H. Al-Aidrous, 2022. "“Values, Challenges, and Critical Success Factors” of Building Information Modelling (BIM) in Malaysia: Experts Perspective," Sustainability, MDPI, vol. 14(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:453-:d:305993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.