IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i14p3950-d250094.html
   My bibliography  Save this article

Indoor Thermal Comfort Improvement through the Integrated BIM-Parametric Workflow-Based Sustainable Renovation of an Exemplary Apartment in Seoul, Korea

Author

Listed:
  • Fabrizio M. Amoruso

    (Department of Architecture, College of Engineering, SungKyunKwan University, 2066 Seobu-ru Jangan-gu, Suwon-si 440-746, Korea)

  • Udo Dietrich

    (Department of Building Physics, HafenCity University, Ueberseeallee 16, 20457 Hamburg, Germany)

  • Thorsten Schuetze

    (Department of Architecture, College of Engineering, SungKyunKwan University, 2066 Seobu-ru Jangan-gu, Suwon-si 440-746, Korea)

Abstract

Apartment buildings are the most common housing typology in South Korea. The mass construction of apartment neighborhoods during a period of rapid economic growth (1970–1997) involved the minimization of material use and quality, as well as industrialized construction processes. Accordingly, apartment buildings require essential renovation after only 20 years of operation. This study focuses on the improvement of thermal comfort for the renovation of an exemplary apartment building based on an integrated Building Information Modeling (BIM) and parametric software framework. The existing apartment was reconstructed with BIM software, and the virtual model was utilized for a parametric building energy simulation to calculate the thermal comfort condition of occupants during the entire year. The thermal comfort analysis results defined the criteria for the development of an enhanced building envelope system characterized by modular panels. The parametric energy simulation was executed for the renovated apartment condition with the enhanced envelope system, and the thermal comfort improvements were quantified by comparing the results for the apartment condition before and after renovation. This study aims to provide the tools and criteria for the comfort analysis of apartment occupants, as well as propose sustainable solutions for the improvement of thermal comfort in aged buildings with similar conditions, internal distribution, and construction components.

Suggested Citation

  • Fabrizio M. Amoruso & Udo Dietrich & Thorsten Schuetze, 2019. "Indoor Thermal Comfort Improvement through the Integrated BIM-Parametric Workflow-Based Sustainable Renovation of an Exemplary Apartment in Seoul, Korea," Sustainability, MDPI, vol. 11(14), pages 1-31, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3950-:d:250094
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/14/3950/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/14/3950/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabrizio Maria Amoruso & Udo Dietrich & Thorsten Schuetze, 2018. "Development of a Building Information Modeling-Parametric Workflow Based Renovation Strategy for an Exemplary Apartment Building in Seoul, Korea," Sustainability, MDPI, vol. 10(12), pages 1-30, November.
    2. Enrico Fabrizio & Valentina Monetti, 2015. "Methodologies and Advancements in the Calibration of Building Energy Models," Energies, MDPI, vol. 8(4), pages 1-27, March.
    3. Randall S. Jones & Byungseo Yoo, 2012. "Achieving the “Low Carbon, Green Growth” Vision in Korea," OECD Economics Department Working Papers 964, OECD Publishing.
    4. Kim, Kyung-Hwan, 2004. "Housing and the Korean economy," Journal of Housing Economics, Elsevier, vol. 13(4), pages 321-341, December.
    5. Fabrizio M. Amoruso & Udo Dietrich & Thorsten Schuetze, 2019. "Integrated BIM-Parametric Workflow-Based Analysis of Daylight Improvement for Sustainable Renovation of an Exemplary Apartment in Seoul, Korea," Sustainability, MDPI, vol. 11(9), pages 1-29, May.
    6. Miyeon Park & Sungho Tae, 2016. "Suggestions of Policy Direction to Improve the Housing Quality in South Korea," Sustainability, MDPI, vol. 8(5), pages 1-26, May.
    7. Michael, A. & Gregoriou, S. & Kalogirou, S.A., 2018. "Environmental assessment of an integrated adaptive system for the improvement of indoor visual comfort of existing buildings," Renewable Energy, Elsevier, vol. 115(C), pages 620-633.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruwini Edirisinghe & Zelinna Pablo & Chimay Anumba & Saratu Tereno, 2021. "An Actor–Network Approach to Developing a Life Cycle BIM Maturity Model (LCBMM)," Sustainability, MDPI, vol. 13(23), pages 1-25, November.
    2. Yali Chen & Dan Huang & Zhen Liu & Mohamed Osmani & Peter Demian, 2022. "Construction 4.0, Industry 4.0, and Building Information Modeling (BIM) for Sustainable Building Development within the Smart City," Sustainability, MDPI, vol. 14(16), pages 1-37, August.
    3. Giuseppe Desogus & Emanuela Quaquero & Giulia Rubiu & Gianluca Gatto & Cristian Perra, 2021. "BIM and IoT Sensors Integration: A Framework for Consumption and Indoor Conditions Data Monitoring of Existing Buildings," Sustainability, MDPI, vol. 13(8), pages 1-22, April.
    4. Yanqiu Cui & Simeng Li & Chunlu Liu & Ninghan Sun, 2020. "Creation and Diversified Applications of Plane Module Libraries for Prefabricated Houses Based on BIM," Sustainability, MDPI, vol. 12(2), pages 1-17, January.
    5. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabrizio Maria Amoruso & Udo Dietrich & Thorsten Schuetze, 2018. "Development of a Building Information Modeling-Parametric Workflow Based Renovation Strategy for an Exemplary Apartment Building in Seoul, Korea," Sustainability, MDPI, vol. 10(12), pages 1-30, November.
    2. Fabrizio M. Amoruso & Udo Dietrich & Thorsten Schuetze, 2019. "Integrated BIM-Parametric Workflow-Based Analysis of Daylight Improvement for Sustainable Renovation of an Exemplary Apartment in Seoul, Korea," Sustainability, MDPI, vol. 11(9), pages 1-29, May.
    3. Arkar, C. & Žižak, T. & Domjan, S. & Medved, S., 2020. "Dynamic parametric models for the holistic evaluation of semi-transparent photovoltaic/thermal façade with latent storage inserts," Applied Energy, Elsevier, vol. 280(C).
    4. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    5. Janusz Sobieraj & Dominik Metelski, 2021. "Testing Housing Markets for Episodes of Exuberance: Evidence from Different Polish Cities," JRFM, MDPI, vol. 14(9), pages 1-29, September.
    6. Gonçalves, M. & Figueiredo, A. & Almeida, R.M.S.F. & Vicente, R., 2024. "Dynamic façades in buildings: A systematic review across thermal comfort, energy efficiency and daylight performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    8. Ahmed, Omar & Sezer, Nurettin & Ouf, Mohamed & Wang, Liangzhu (Leon) & Hassan, Ibrahim Galal, 2023. "State-of-the-art review of occupant behavior modeling and implementation in building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    9. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    10. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
    11. Suzana Domjan & Sašo Medved & Boštjan Černe & Ciril Arkar, 2019. "Fast Modelling of nZEB Metrics of Office Buildings Built with Advanced Glass and BIPV Facade Structures," Energies, MDPI, vol. 12(16), pages 1-18, August.
    12. Zezhou Wu & Changhong Chen & Yuzhu Cai & Chen Lu & Hao Wang & Tao Yu, 2019. "BIM-Based Visualization Research in the Construction Industry: A Network Analysis," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    13. Fabrizio M. Amoruso & Min-Hee Sonn & Soyeon Chu & Thorsten Schuetze, 2021. "Sustainable Building Legislation and Incentives in Korea: A Case-Study-Based Comparison of Building New and Renovation," Sustainability, MDPI, vol. 13(9), pages 1-41, April.
    14. Cristina Brunelli & Francesco Castellani & Alberto Garinei & Lorenzo Biondi & Marcello Marconi, 2016. "A Procedure to Perform Multi-Objective Optimization for Sustainable Design of Buildings," Energies, MDPI, vol. 9(11), pages 1-15, November.
    15. Nayara R. M. Sakiyama & Joyce C. Carlo & Leonardo Mazzaferro & Harald Garrecht, 2021. "Building Optimization through a Parametric Design Platform: Using Sensitivity Analysis to Improve a Radial-Based Algorithm Performance," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    16. Fabio Milani & Sung Ho Park, 2019. "Expectations and Macro-Housing Interactions in a Small Open Economy: Evidence from Korea," Open Economies Review, Springer, vol. 30(2), pages 375-402, April.
    17. Pedro Paulo Fernandes da Silva & Alberto Hernandez Neto & Ildo Luis Sauer, 2021. "Evaluation of Model Calibration Method for Simulation Performance of a Public Hospital in Brazil," Energies, MDPI, vol. 14(13), pages 1-20, June.
    18. Attia, Shady & Canonge, Théophile & Popineau, Mathieu & Cuchet, Mathilde, 2022. "Developing a benchmark model for renovated, nearly zero-energy, terraced dwellings," Applied Energy, Elsevier, vol. 306(PB).
    19. Byung-Ki Jeon & Eui-Jong Kim, 2021. "LSTM-Based Model Predictive Control for Optimal Temperature Set-Point Planning," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    20. Hamed Yassaghi & Simi Hoque, 2021. "Impact Assessment in the Process of Propagating Climate Change Uncertainties into Building Energy Use," Energies, MDPI, vol. 14(2), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3950-:d:250094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.