IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i15p4093-d252689.html
   My bibliography  Save this article

Regional Total Factor Energy Efficiency Evaluation of China: The Perspective of Social Welfare

Author

Listed:
  • Haixia Cai

    (Systems and Industrial Engineering Technology Research Center, Zhongyuan University of Technology, Zhengzhou 450007, China)

  • Ruguo Fan

    (School of Economics and Management, Wuhan University, Wuhan 430072, China)

Abstract

The energy resource is an essential input of economic growth, which has an important impact on the ecological environment and social welfare. From the perspective of social welfare, considering the radial and non-radial characteristics of different input and output indicators, and the inseparability of the energy input and undesirable output, this study employs the non-separable hybrid DEA (Data Envelopment Analysis) model to evaluate the total energy efficiency of Chinese provinces between 2012 and 2016. Furthermore, this study calculates the energy saving and emission reduction potentials of China. The results reveal that the average total factor energy efficiency in China from 2012 to 2016 is 0.694, which means that there are still 30.6% energy efficiency losses. There is great potential for China to save energy, reduce pollutant emissions, and increase the output of social welfare. There are great differences in the total factor energy efficiency among provinces. The average energy saving potential of the whole country is 60.5%. If the energy efficiency of all provinces can reach the frontier, the whole country can save more than half of the energy consumption. The highest national average emission reduction potential is SO 2 , followed by dust, CO 2 , and NO X . The implication of the conclusion is that in the development of regional economy, we cannot sacrifice the social welfare and sustainable development and take the growth rate of GDP as the only objective. Different energy saving and emission reduction policies should be put forward according to the characteristics of different provinces.

Suggested Citation

  • Haixia Cai & Ruguo Fan, 2019. "Regional Total Factor Energy Efficiency Evaluation of China: The Perspective of Social Welfare," Sustainability, MDPI, vol. 11(15), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4093-:d:252689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/15/4093/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/15/4093/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Lan-Bing & Hu, Jin-Li, 2012. "Ecological total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 46(C), pages 216-224.
    2. Mazur, Allan, 2011. "Does increasing energy or electricity consumption improve quality of life in industrial nations?," Energy Policy, Elsevier, vol. 39(5), pages 2568-2572, May.
    3. Ying Li & Yung-ho Chiu & Tai-Yu Lin, 2019. "Energy and Environmental Efficiency in Different Chinese Regions," Sustainability, MDPI, vol. 11(4), pages 1-26, February.
    4. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
    5. Apergis, Nicholas & Aye, Goodness C. & Barros, Carlos Pestana & Gupta, Rangan & Wanke, Peter, 2015. "Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs," Energy Economics, Elsevier, vol. 51(C), pages 45-53.
    6. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    7. Sweidan, Osama D. & Alwaked, Ahmed A., 2016. "Economic development and the energy intensity of human well-being: Evidence from the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1363-1369.
    8. Li, Ke & Lin, Boqiang, 2015. "Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China," Energy Economics, Elsevier, vol. 48(C), pages 230-241.
    9. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    10. Scheel, Holger, 2001. "Undesirable outputs in efficiency valuations," European Journal of Operational Research, Elsevier, vol. 132(2), pages 400-410, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mihail Busu & Carmen Lenuta Trica, 2019. "Sustainability of Circular Economy Indicators and Their Impact on Economic Growth of the European Union," Sustainability, MDPI, vol. 11(19), pages 1-13, October.
    2. Wei Yang & Zudi Lu & Di Wang & Yanmin Shao & Jinfeng Shi, 2020. "Sustainable Evolution of China’s Regional Energy Efficiency Based on a Weighted SBM Model with Energy Substitutability," Sustainability, MDPI, vol. 12(23), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuangjie Li & Hongyu Diao & Liming Wang & Chunqi Li, 2021. "Energy Efficiency Measurement: A VO TFEE Approach and Its Application," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    2. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    3. Ying Li & Yung-Ho Chiu & Liang Chun Lu, 2018. "Regional Energy, CO 2 , and Economic and Air Quality Index Performances in China: A Meta-Frontier Approach," Energies, MDPI, vol. 11(8), pages 1-20, August.
    4. Xiangyu Teng & Danting Lu & Yung-ho Chiu, 2019. "Emission Reduction and Energy Performance Improvement with Different Regional Treatment Intensity in China," Energies, MDPI, vol. 12(2), pages 1-18, January.
    5. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
    6. Demiral, Elif E. & Sağlam, Ümit, 2021. "Eco-efficiency and Eco-productivity assessments of the states in the United States: A two-stage Non-parametric analysis," Applied Energy, Elsevier, vol. 303(C).
    7. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    8. Tao Xu & Jianxin You & Hui Li & Luning Shao, 2020. "Energy Efficiency Evaluation Based on Data Envelopment Analysis: A Literature Review," Energies, MDPI, vol. 13(14), pages 1-20, July.
    9. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    10. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    11. Shuangjie Li & Li Li & Liming Wang, 2020. "2030 Target for Energy Efficiency and Emission Reduction in the EU Paper Industry," Energies, MDPI, vol. 14(1), pages 1-17, December.
    12. Lucio Cecchini & Francesco Romagnoli & Massimo Chiorri & Biancamaria Torquati, 2023. "Eco-Efficiency and Its Determinants: The Case of the Italian Beef Cattle Sector," Agriculture, MDPI, vol. 13(5), pages 1-18, May.
    13. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    14. Ze Tian & Fang-Rong Ren & Qin-Wen Xiao & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Cross-Regional Comparative Study on Carbon Emission Efficiency of China’s Yangtze River Economic Belt Based on the Meta-Frontier," IJERPH, MDPI, vol. 16(4), pages 1-19, February.
    15. Jie Wu & Qingyuan Zhu & Pengzhen Yin & Malin Song, 2017. "Measuring energy and environmental performance for regions in China by using DEA-based Malmquist indices," Operational Research, Springer, vol. 17(3), pages 715-735, October.
    16. Li, Bo & Han, Yukai & Wang, Chensheng & Sun, Wei, 2022. "Did civilized city policy improve energy efficiency of resource-based cities? Prefecture-level evidence from China," Energy Policy, Elsevier, vol. 167(C).
    17. Yang Li & An-Chi Liu & Shu-Mei Wang & Yiting Zhan & Jingran Chen & Hsiao-Fen Hsiao, 2022. "A Study of Total-Factor Energy Efficiency for Regional Sustainable Development in China: An Application of Bootstrapped DEA and Clustering Approach," Energies, MDPI, vol. 15(9), pages 1-13, April.
    18. Liang Chun Lu & Yung-ho Chiu & Shih-Yung Chiu & Tzu-Han Chang, 2022. "Do Forests help environmental development of Cities in China?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6602-6629, May.
    19. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.
    20. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4093-:d:252689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.