IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v133y2019ics0301421519304616.html
   My bibliography  Save this article

Improvement path, the improvement potential and the dynamic evolution of regional energy efficiency in China: Based on an improved nonradial multidirectional efficiency analysis

Author

Listed:
  • Zhu, Lin
  • Wang, Yong
  • Shang, Peipei
  • Qi, Lin
  • Yang, Guangchun
  • Wang, Ying

Abstract

As a globally important energy-using country, China's energy efficiency improvement is crucial to achieving its energy-saving goals and economic transformation. This paper explores the improvement path, the improvement potential and the dynamic evolution of regional energy efficiency in China from 2005 to 2016 with an improved multidirectional efficiency analysis and the Markov model. The results indicate that (1) China's provincial energy efficiency is olive-shaped, and there is a significant spatial imbalance. (2) Most central provinces and a small number of eastern and western provinces need to adopt a one-way breakthrough path for their weak links. Most western provinces should adopt a step-by-step progressive or leap-forward path to improve energy efficiency. (3) The energy saving potential of the eastern and western regions is relatively large, and the potential value of CO2 emission reduction in the central region are relatively large. (4) In the short run, the comprehensive energy efficiency of different provinces aren't highly fluid between different levels; In the long run, the equilibrium state of energy efficiency in China will be at a mid-low level. Accordingly, it is recommended to strengthen exchanges between different regions, give full play to the resource advantages of each region, and differentiated and targeted energy efficiency policies should be carried out in different provinces.

Suggested Citation

  • Zhu, Lin & Wang, Yong & Shang, Peipei & Qi, Lin & Yang, Guangchun & Wang, Ying, 2019. "Improvement path, the improvement potential and the dynamic evolution of regional energy efficiency in China: Based on an improved nonradial multidirectional efficiency analysis," Energy Policy, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:enepol:v:133:y:2019:i:c:s0301421519304616
    DOI: 10.1016/j.enpol.2019.110883
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519304616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.110883?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Bogetoft & Jens Hougaard, 1999. "Efficiency Evaluations Based on Potential (Non-Proportional) Improvements," Journal of Productivity Analysis, Springer, vol. 12(3), pages 233-247, November.
    2. Lin Zhu & Lichun He & Peipei Shang & Yingchun Zhang & Xiaojun Ma, 2018. "Influencing Factors and Scenario Forecasts of Carbon Emissions of the Chinese Power Industry: Based on a Generalized Divisia Index Model and Monte Carlo Simulation," Energies, MDPI, vol. 11(9), pages 1-26, September.
    3. Okajima, Shigeharu & Okajima, Hiroko, 2013. "Analysis of energy intensity in Japan," Energy Policy, Elsevier, vol. 61(C), pages 574-586.
    4. Jimenez, Raul & Mercado, Jorge, 2014. "Energy intensity: A decomposition and counterfactual exercise for Latin American countries," Energy Economics, Elsevier, vol. 42(C), pages 161-171.
    5. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    6. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
    7. Wang, Zhaohua & Feng, Chao & Zhang, Bin, 2014. "An empirical analysis of China's energy efficiency from both static and dynamic perspectives," Energy, Elsevier, vol. 74(C), pages 322-330.
    8. Zhao, Haoran & Guo, Sen & Zhao, Huiru, 2019. "Provincial energy efficiency of China quantified by three-stage data envelopment analysis," Energy, Elsevier, vol. 166(C), pages 96-107.
    9. Watanabe, Michio & Tanaka, Katsuya, 2007. "Efficiency analysis of Chinese industry: A directional distance function approach," Energy Policy, Elsevier, vol. 35(12), pages 6323-6331, December.
    10. Asmild, Mette & Pastor, Jesús T., 2010. "Slack free MEA and RDM with comprehensive efficiency measures," Omega, Elsevier, vol. 38(6), pages 475-483, December.
    11. Wu, F. & Fan, L.W. & Zhou, P. & Zhou, D.Q., 2012. "Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis," Energy Policy, Elsevier, vol. 49(C), pages 164-172.
    12. Asmild, Mette & Matthews, Kent, 2012. "Multi-directional efficiency analysis of efficiency patterns in Chinese banks 1997–2008," European Journal of Operational Research, Elsevier, vol. 219(2), pages 434-441.
    13. Wang, Jian & Lv, Kangjuan & Bian, Yiwen & Cheng, Yu, 2017. "Energy efficiency and marginal carbon dioxide emission abatement cost in urban China," Energy Policy, Elsevier, vol. 105(C), pages 246-255.
    14. Chang, Ming-Chung, 2014. "Energy intensity, target level of energy intensity, and room for improvement in energy intensity: An application to the study of regions in the EU," Energy Policy, Elsevier, vol. 67(C), pages 648-655.
    15. Yeh, Tsai-lien & Chen, Tser-yieth & Lai, Pei-ying, 2010. "A comparative study of energy utilization efficiency between Taiwan and China," Energy Policy, Elsevier, vol. 38(5), pages 2386-2394, May.
    16. Honma, Satoshi & Hu, Jin-Li, 2014. "Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis," Applied Energy, Elsevier, vol. 119(C), pages 67-78.
    17. Lin, Boqiang & Du, Kerui, 2014. "Measuring energy efficiency under heterogeneous technologies using a latent class stochastic frontier approach: An application to Chinese energy economy," Energy, Elsevier, vol. 76(C), pages 884-890.
    18. Zhang, Xing-Ping & Cheng, Xiao-Mei & Yuan, Jia-Hai & Gao, Xiao-Jun, 2011. "Total-factor energy efficiency in developing countries," Energy Policy, Elsevier, vol. 39(2), pages 644-650, February.
    19. Zhang, Bing & Bi, Jun & Fan, Ziying & Yuan, Zengwei & Ge, Junjie, 2008. "Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach," Ecological Economics, Elsevier, vol. 68(1-2), pages 306-316, December.
    20. Torben Holvad & Jens Hougaard & Dorte Kronborg & Hans Kvist, 2004. "Measuring inefficiency in the Norwegian bus industry using multi-directional efficiency analysis," Transportation, Springer, vol. 31(3), pages 349-369, August.
    21. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
    22. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    23. Ordás Criado, C. & Grether, J.-M., 2011. "Convergence in per capita CO2 emissions: A robust distributional approach," Resource and Energy Economics, Elsevier, vol. 33(3), pages 637-665, September.
    24. Honma, Satoshi & Hu, Jin-Li, 2014. "A panel data parametric frontier technique for measuring total-factor energy efficiency: An application to Japanese regions," Energy, Elsevier, vol. 78(C), pages 732-739.
    25. Ma, Xuejiao & Wang, Yong & Wang, Chen, 2017. "Low-carbon development of China's thermal power industry based on an international comparison: Review, analysis and forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 942-970.
    26. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2012. "A comparative analysis of China’s regional energy and emission performance: Which is the better way to deal with undesirable outputs?," Energy Policy, Elsevier, vol. 46(C), pages 574-584.
    27. Wang, Qunwei & Zhou, Peng & Zhou, Dequn, 2012. "Efficiency measurement with carbon dioxide emissions: The case of China," Applied Energy, Elsevier, vol. 90(1), pages 161-166.
    28. Wang, Chunhua, 2011. "Sources of energy productivity growth and its distribution dynamics in China," Resource and Energy Economics, Elsevier, vol. 33(1), pages 279-292, January.
    29. Quah, Danny T., 1996. "Empirics for economic growth and convergence," European Economic Review, Elsevier, vol. 40(6), pages 1353-1375, June.
    30. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    31. Oikonomou, V. & Becchis, F. & Steg, L. & Russolillo, D., 2009. "Energy saving and energy efficiency concepts for policy making," Energy Policy, Elsevier, vol. 37(11), pages 4787-4796, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Lin & Luo, Jian & Dong, Qingli & Zhao, Yang & Wang, Yunyue & Wang, Yong, 2021. "Green technology innovation efficiency of energy-intensive industries in China from the perspective of shared resources: Dynamic change and improvement path," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    2. Meng, Ming & Qu, Danlei, 2022. "Understanding the green energy efficiencies of provinces in China: A Super-SBM and GML analysis," Energy, Elsevier, vol. 239(PA).
    3. Liangjun Yi & Wei Zhang & Yuanxin Liu & Weilin Zhang, 2021. "An Analysis of the Impact of Market Segmentation on Energy Efficiency: A Spatial Econometric Model Applied in China," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    4. Jiawei Yang, 2023. "Disentangling the sources of bank inefficiency: a two-stage network multi-directional efficiency analysis approach," Annals of Operations Research, Springer, vol. 326(1), pages 369-410, July.
    5. Jianqing Zhang & Song Wang & Peilei Yang & Fei Fan & Xueli Wang, 2020. "Analysis of Scale Factors on China’s Sustainable Development Efficiency Based on Three-Stage DEA and a Double Threshold Test," Sustainability, MDPI, vol. 12(6), pages 1-26, March.
    6. Qu, Weihua & Qu, Guohua & Zhang, Xindong & Robert, Dixon, 2021. "The impact of public participation in environmental behavior on haze pollution and public health in China," Economic Modelling, Elsevier, vol. 98(C), pages 319-335.
    7. Xiaohua Song & Caiping Zhao & Jingjing Han & Qi Zhang & Jinpeng Liu & Yuanying Chi, 2020. "Measurement and Influencing Factors Research of the Energy and Power Efficiency in China: Based on the Supply-Side Structural Reform Perspective," Sustainability, MDPI, vol. 12(9), pages 1-23, May.
    8. Wei Yang & Zudi Lu & Di Wang & Yanmin Shao & Jinfeng Shi, 2020. "Sustainable Evolution of China’s Regional Energy Efficiency Based on a Weighted SBM Model with Energy Substitutability," Sustainability, MDPI, vol. 12(23), pages 1-22, December.
    9. He, Haonan & Li, Shiqiang & Wang, Shanyong & Zhang, Chaojia & Ma, Fei, 2023. "Value of dual-credit policy: Evidence from green technology innovation efficiency," Transport Policy, Elsevier, vol. 139(C), pages 182-198.
    10. Yanjun Yang & Rui Xue & Dong Yang, 2020. "Does market segmentation necessarily discourage energy efficiency?," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-19, May.
    11. Guo, Qiu-tong & Dong, Yong & Feng, Biao & Zhang, Hao, 2023. "Can green finance development promote total-factor energy efficiency? Empirical evidence from China based on a spatial Durbin model," Energy Policy, Elsevier, vol. 177(C).
    12. Chen, Yangfan & Zhang, Xiaohong, 2021. "Investigating the interactions between Chinese economic growth, energy consumption and its air environmental cost during 1989–2016 and forecasting their future trends," Ecological Modelling, Elsevier, vol. 461(C).
    13. Liu, Haomin & Zhang, Zaixu & Zhang, Tao & Wang, Liyang, 2020. "Revisiting China’s provincial energy efficiency and its influencing factors," Energy, Elsevier, vol. 208(C).
    14. Yiru Jiang & Xinjun Wang, 2024. "Evaluation, Driving Mechanism and Spatial Correlation Analysis of Atmospheric Environmental Efficiency in the “2+26” Cities Based on the Nonradial MEA Model," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    15. Mengchao Yao & Jinjun Duan & Qingsong Wang, 2022. "Spatial and Temporal Evolution Analysis of Industrial Green Technology Innovation Efficiency in the Yangtze River Economic Belt," IJERPH, MDPI, vol. 19(11), pages 1-20, May.
    16. Manevska-Tasevska, Gordana & Hansson, Helena & Asmild, Mette & Surry, Yves, 2021. "Exploring the regional efficiency of the Swedish agricultural sector during the CAP reforms ‒ multi-directional efficiency analysis approach," Land Use Policy, Elsevier, vol. 100(C).
    17. Xin-gang, Zhao & Shu-ran, Hu, 2020. "Does market-based electricity price affect China's energy efficiency?," Energy Economics, Elsevier, vol. 91(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    3. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
    4. Li, Ke & Lin, Boqiang, 2015. "Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China," Energy Economics, Elsevier, vol. 48(C), pages 230-241.
    5. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    6. Fang-Rong Ren & Ze Tian & Yu-Ting Shen & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Energy, CO 2 , and AQI Efficiency and Improvement of the Yangtze River Economic Belt," Energies, MDPI, vol. 12(4), pages 1-17, February.
    7. Sueyoshi, Toshiyuki & Yuan, Yan, 2015. "China's regional sustainability and diversified resource allocation: DEA environmental assessment on economic development and air pollution," Energy Economics, Elsevier, vol. 49(C), pages 239-256.
    8. Wang, Jian & Lv, Kangjuan & Bian, Yiwen & Cheng, Yu, 2017. "Energy efficiency and marginal carbon dioxide emission abatement cost in urban China," Energy Policy, Elsevier, vol. 105(C), pages 246-255.
    9. Iftikhar, Yaser & Wang, Zhaohua & Zhang, Bin & Wang, Bo, 2018. "Energy and CO2 emissions efficiency of major economies: A network DEA approach," Energy, Elsevier, vol. 147(C), pages 197-207.
    10. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    11. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    12. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    13. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    14. Chia-Jung Tu & Ming-Chung Chang & Chiang-Ping Chen, 2016. "Progressive Time-Weighted Dynamic Energy Efficiency, Energy Decoupling Rate, and Decarbonization: An Empirical Study on G7 and BRICS," Sustainability, MDPI, vol. 8(9), pages 1-17, September.
    15. Sueyoshi, Toshiyuki & Yuan, Yan, 2016. "Returns to damage under undesirable congestion and damages to return under desirable congestion measured by DEA environmental assessment with multiplier restriction: Economic and energy planning for s," Energy Economics, Elsevier, vol. 56(C), pages 288-309.
    16. Lin, Boqiang & Du, Kerui, 2015. "Energy and CO2 emissions performance in China's regional economies: Do market-oriented reforms matter?," Energy Policy, Elsevier, vol. 78(C), pages 113-124.
    17. Özkara, Yücel & Atak, Mehmet, 2015. "Regional total-factor energy efficiency and electricity saving potential of manufacturing industry in Turkey," Energy, Elsevier, vol. 93(P1), pages 495-510.
    18. Wang, Zhaohua & Feng, Chao, 2015. "A performance evaluation of the energy, environmental, and economic efficiency and productivity in China: An application of global data envelopment analysis," Applied Energy, Elsevier, vol. 147(C), pages 617-626.
    19. Wang, Ke & Wei, Yi-Ming, 2016. "Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator," Energy Economics, Elsevier, vol. 54(C), pages 50-59.
    20. Feng, Chao & Zhang, Hua & Huang, Jian-Bai, 2017. "The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 859-872.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:133:y:2019:i:c:s0301421519304616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.