IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9740-d449211.html
   My bibliography  Save this article

Impact of Land Use/Cover Changes on Soil Erosion in Western Kenya

Author

Listed:
  • Benjamin Kipkemboi Kogo

    (School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia)

  • Lalit Kumar

    (School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia)

  • Richard Koech

    (Department of Agriculture, Science and Environment, Central Queensland University, Bundaberg, QLD 4670, Australia)

Abstract

This study examined the impact of land use/cover changes on soil erosion in western Kenya in the years 1995 and 2017. The study used the GIS-based Revised Universal Soil Loss Equation (RUSLE) modelling approach and remote sensing assessment. The results showed that the average soil loss through sheet, rill and inter-rill soil erosion processes was 0.3 t/ha/y and 0.5 t/ha/y, in the years 1995 and 2017, respectively. Of the total soil loss, farms contributed more than 50%, both in 1995 and 2017 followed by grass/shrub (7.9% in 1995 and 11.9% in 2017), forest (16% in 1995 and 11.4% in 2017), and the least in built-up areas. The highest soil erosion rates were observed in farms cleared from forests (0.84 tons/ha) followed by those converted from grass/shrub areas (0.52 tons/ha). The rate of soil erosion was observed to increase with slope due to high velocity and erosivity of the runoff. Areas with high erodibility in the region are found primarily in slopes of more than 30 degrees, especially in Mt. Elgon, Chereng’anyi hills and Elgeyo escarpments. This study forms the first multi-temporal assessment to explore the extent of soil erosion and seeks to provide a useful knowledge base to support decision-makers in developing strategies to mitigate soil erosion for sustainable crop production.

Suggested Citation

  • Benjamin Kipkemboi Kogo & Lalit Kumar & Richard Koech, 2020. "Impact of Land Use/Cover Changes on Soil Erosion in Western Kenya," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9740-:d:449211
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/22/9740/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/22/9740/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Onyando & P. Kisoyan & M. Chemelil, 2005. "Estimation of Potential Soil Erosion for River Perkerra Catchment in Kenya," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(2), pages 133-143, April.
    2. Yves Hategekimana & Mona Allam & Qingyan Meng & Yueping Nie & Elhag Mohamed, 2020. "Quantification of Soil Losses along the Coastal Protected Areas in Kenya," Land, MDPI, vol. 9(5), pages 1-16, May.
    3. Tittonell, P. & Vanlauwe, B. & de Ridder, N. & Giller, K.E., 2007. "Heterogeneity of crop productivity and resource use efficiency within smallholder Kenyan farms: Soil fertility gradients or management intensity gradients?," Agricultural Systems, Elsevier, vol. 94(2), pages 376-390, May.
    4. Chung-I Wu & Suhua Shi & Ya-ping Zhang, 2004. "A case for conservation," Nature, Nature, vol. 428(6979), pages 213-214, March.
    5. Yang, Xiaolin & Gao, Wangsheng & Shi, Quanhong & Chen, Fu & Chu, Qingquan, 2013. "Impact of climate change on the water requirement of summer maize in the Huang-Huai-Hai farming region," Agricultural Water Management, Elsevier, vol. 124(C), pages 20-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dennis Kimoso Mulupi & Mose P. B Ph.D & Kenneth Waluse Sibiko Ph.D, 2021. "Subsidized Fertilizer Utilization and Determinants among Small-scale Maize Farmers in Kakamega County, Kenya," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 5(11), pages 614-622, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:gat:wpaper:1509 is not listed on IDEAS
    2. Qiang Tang & Chansheng He & Xiubin He & Yuhai Bao & Ronghua Zhong & Anbang Wen, 2014. "Farmers’ Sustainable Strategies for Soil Conservation on Sloping Arable Lands in the Upper Yangtze River Basin, China," Sustainability, MDPI, vol. 6(8), pages 1-12, July.
    3. Elsayed A. Abdelsamie & Mostafa A. Abdellatif & Farag O. Hassan & Ahmed A. El Baroudy & Elsayed Said Mohamed & Dmitry E. Kucher & Mohamed S. Shokr, 2022. "Integration of RUSLE Model, Remote Sensing and GIS Techniques for Assessing Soil Erosion Hazards in Arid Zones," Agriculture, MDPI, vol. 13(1), pages 1-19, December.
    4. Demetris Zarris & Marianna Vlastara & Dionysia Panagoulia, 2011. "Sediment Delivery Assessment for a Transboundary Mediterranean Catchment: The Example of Nestos River Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3785-3803, November.
    5. Douglas Gollin & Christopher Udry, 2021. "Heterogeneity, Measurement Error, and Misallocation: Evidence from African Agriculture," Journal of Political Economy, University of Chicago Press, vol. 129(1), pages 1-80.
    6. Manoj Jain & Debjyoti Das, 2010. "Estimation of Sediment Yield and Areas of Soil Erosion and Deposition for Watershed Prioritization using GIS and Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2091-2112, August.
    7. Jan Lietava & Risa Morimoto, 2019. "Regression tree analysis of soil fertility and agro-economic practices and the effects on yield in Tanzania," Working Papers 218, Department of Economics, SOAS University of London, UK.
    8. Ashish Pandey & V. Chowdary & B. Mal, 2007. "Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(4), pages 729-746, April.
    9. Philip Kostov & Sophia Davidova, 2023. "Smallholders Are Not the Same: Under the Hood of Kosovo Agriculture," Land, MDPI, vol. 12(1), pages 1-16, January.
    10. Haiming Yan & Jinyan Zhan & Bing Liu & Yongwei Yuan, 2014. "Model Estimation of Water Use Efficiency for Soil Conservation in the Lower Heihe River Basin, Northwest China during 2000–2008," Sustainability, MDPI, vol. 6(9), pages 1-17, September.
    11. Haowei Sun & Jinghan Ma & Li Wang, 2023. "Changes in per capita wheat production in China in the context of climate change and population growth," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(3), pages 597-612, June.
    12. Susanta Das & Proloy Deb & Pradip Kumar Bora & Prafull Katre, 2020. "Comparison of RUSLE and MMF Soil Loss Models and Evaluation of Catchment Scale Best Management Practices for a Mountainous Watershed in India," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    13. Snapp, Sieglinde, 2022. "Embracing variability in soils on smallholder farms: New tools and better science," Agricultural Systems, Elsevier, vol. 195(C).
    14. Jindo, Keiji & Schut, Antonius G.T. & Langeveld, Johannes W.A., 2020. "Sustainable intensification in Western Kenya: Who will benefit?," Agricultural Systems, Elsevier, vol. 182(C).
    15. Li, Na & Li, Yi & Yang, Qiliang & Biswas, Asim & Dong, Hezhong, 2024. "Simulating climate change impacts on cotton using AquaCrop model in China," Agricultural Systems, Elsevier, vol. 216(C).
    16. Zhang, Lei & Traore, Seydou & Cui, Yuanlai & Luo, Yufeng & Zhu, Ge & Liu, Bo & Fipps, Guy & Karthikeyan, R. & Singh, Vijay, 2019. "Assessment of spatiotemporal variability of reference evapotranspiration and controlling climate factors over decades in China using geospatial techniques," Agricultural Water Management, Elsevier, vol. 213(C), pages 499-511.
    17. Goswami, Rupak & Roy, Kalyan & Dutta, Sudarshan & Ray, Krishnendu & Sarkar, Sukamal & Brahmachari, Koushik & Nanda, Manoj Kr. & Mainuddin, Mohammed & Banerjee, Hirak & Timsina, Jagadish & Majumdar, Ka, 2021. "Multi-faceted impact and outcome of COVID-19 on smallholder agricultural systems: Integrating qualitative research and fuzzy cognitive mapping to explore resilient strategies," Agricultural Systems, Elsevier, vol. 189(C).
    18. Kumar, Shalander & Craufurd, Peter & Haileslassie, Amare & Ramilan, Thiagarajah & Rathore, Abhishek & Whitbread, Anthony, 2019. "Farm typology analysis and technology assessment: An application in an arid region of South Asia," Land Use Policy, Elsevier, vol. 88(C).
    19. Liguang Jiang & Zhijun Yao & Zhaofei Liu & Shanshan Wu & Rui Wang & Lei Wang, 2015. "Estimation of soil erosion in some sections of Lower Jinsha River based on RUSLE," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1831-1847, April.
    20. Michael Misiko & Pablo Tittonell & Ken Giller & Paul Richards, 2011. "Strengthening understanding and perceptions of mineral fertilizer use among smallholder farmers: evidence from collective trials in western Kenya," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 28(1), pages 27-38, February.
    21. Rupak Goswami & Soumitra Chatterjee & Binoy Prasad, 2014. "Farm types and their economic characterization in complex agro-ecosystems for informed extension intervention: study from coastal West Bengal, India," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 2(1), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9740-:d:449211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.