IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i20p8358-d426314.html
   My bibliography  Save this article

Efficacy of Supplemental Irrigation and Nitrogen Management on Enhancing Nitrogen Availability and Urease Activity in Soils with Sorghum Production

Author

Listed:
  • Gilbert C. Sigua

    (United States Department of Agriculture, Agricultural Research Service, Coastal Plains Soil, Water, and Plant Research Center, Florence, SC 29501, USA)

  • Kenneth C. Stone

    (United States Department of Agriculture, Agricultural Research Service, Coastal Plains Soil, Water, and Plant Research Center, Florence, SC 29501, USA)

  • Phil J. Bauer

    (Retired Agronomist, USDA-ARS, Florence, SC 29501, USA)

  • Ariel A. Szogi

    (United States Department of Agriculture, Agricultural Research Service, Coastal Plains Soil, Water, and Plant Research Center, Florence, SC 29501, USA)

Abstract

The soil nitrogen (N) availability and urease activity (UA) in a humid ecosystem with variable rainfall distribution and poor soil fertility are not well understood. A complete appreciation of N cycling in the soil–water–plant continuum is needed to better manage N and water in regions that will be strongly affected by climate change. A sorghum ( Sorghum bicolor L.) study located in Florence, South Carolina, USA, was conducted using a variable-rate pivot system. We hypothesized that supplemental irrigation (SI) and N would enhance UA and N uptake while minimizing the concentration of N in porewater (TINW). The aim of the study was to assess the impact of SI (0, 50, and 100%) and N fertilization (0, 85, and 170 kg N ha −1 ) on: UA; total N (TNS); total inorganic N (TINS); TINW; and N uptake of sorghum. Results support our research hypothesis. The greatest UA was from 0% SI and 170 kg ha −1 (18.7 µg N g −1 ha −1 ). Porewater N (mg L −1 ), when averaged across SI and N showed a significantly lower concentration at lower soil depth (9.9 ± 0.7) than the upper depth (26.1 ± 2.4). The 100% SI had the greatest biomass N uptake (NUPB) of 67.9 ± 31.1 kg ha −1 and grain N uptake (NUG) of 52.7 ± 20.5 kg ha −1 . The greatest NUPB (70.9 ± 30.3 kg ha −1 ) and NUG (55.3 ± 16.5 kg ha −1 ) was from the application of 170 kg N ha −1 . Overall, results showed that proper use of water and N enhanced soil N dynamics, and improved biomass productivity and N uptake of sorghum.

Suggested Citation

  • Gilbert C. Sigua & Kenneth C. Stone & Phil J. Bauer & Ariel A. Szogi, 2020. "Efficacy of Supplemental Irrigation and Nitrogen Management on Enhancing Nitrogen Availability and Urease Activity in Soils with Sorghum Production," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8358-:d:426314
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/20/8358/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/20/8358/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gheysari, Mahdi & Mirlatifi, Seyed Majid & Bannayan, Mohammad & Homaee, Mehdi & Hoogenboom, Gerrit, 2009. "Interaction of water and nitrogen on maize grown for silage," Agricultural Water Management, Elsevier, vol. 96(5), pages 809-821, May.
    2. Gholamhoseini, M. & AghaAlikhani, M. & Modarres Sanavy, S.A.M. & Mirlatifi, S.M., 2013. "Interactions of irrigation, weed and nitrogen on corn yield, nitrogen use efficiency and nitrate leaching," Agricultural Water Management, Elsevier, vol. 126(C), pages 9-18.
    3. Li, Xiaoxin & Hu, Chunsheng & Delgado, Jorge A. & Zhang, Yuming & Ouyang, Zhiyun, 2007. "Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north china plain," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 137-147, April.
    4. Sigua, G.C. & Stone, K.C. & Bauer, P.J. & Szogi, A.A. & Shumaker, P.D., 2017. "Impacts of irrigation scheduling on pore water nitrate and phosphate in coastal plain region of the United States," Agricultural Water Management, Elsevier, vol. 186(C), pages 75-85.
    5. Zougmore, R. & Mando, A. & Stroosnijder, L., 2004. "Effect of soil and water conservation and nutrient management on the soil-plant water balance in semi-arid Burkina Faso," Agricultural Water Management, Elsevier, vol. 65(2), pages 103-120, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jungai & Liu, Hongbin & Wang, Hongyuan & Luo, Jiafa & Zhang, Xuejun & Liu, Zhaohui & Zhang, Yitao & Zhai, Limei & Lei, Qiuliang & Ren, Tianzhi & Li, Yan & Bashir, Muhammad Amjad, 2018. "Managing irrigation and fertilization for the sustainable cultivation of greenhouse vegetables," Agricultural Water Management, Elsevier, vol. 210(C), pages 354-363.
    2. Chilundo, Mario & Joel, Abraham & Wesström, Ingrid & Brito, Rui & Messing, Ingmar, 2016. "Effects of reduced irrigation dose and slow release fertiliser on nitrogen use efficiency and crop yield in a semi-arid loamy sand," Agricultural Water Management, Elsevier, vol. 168(C), pages 68-77.
    3. Du, Huiying & Gao, Wenxuan & Li, Jiajia & Shen, Shizhou & Wang, Feng & Fu, Li & Zhang, Keqiang, 2019. "Effects of digested biogas slurry applicationmixed with irrigation water on nitrate leaching during wheat-maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 213(C), pages 882-893.
    4. Jiao Liu & Faguang Lu & Yiming Zhu & Hao Wu & Irshad Ahmad & Guichun Dong & Guisheng Zhou & Yanqing Wu, 2024. "The Effects of Planting Density and Nitrogen Application on the Growth Quality of Alfalfa Forage in Saline Soils," Agriculture, MDPI, vol. 14(2), pages 1-21, February.
    5. Dai, Zhiguang & Fei, Liangjun & Huang, Deliang & Zeng, Jian & Chen, Lin & Cai, Yaohui, 2019. "Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region," Agricultural Water Management, Elsevier, vol. 213(C), pages 146-154.
    6. Anik, Asif Reza & Eory, Vera & Begho, Toritseju & Rahman, Md. Mizanur, 2023. "Determinants of nitrogen use efficiency and gaseous emissions assessed from farm survey: A case of wheat in Bangladesh," Agricultural Systems, Elsevier, vol. 206(C).
    7. Jiménez-Aguirre, M.T. & Isidoro, D., 2018. "Hydrosaline Balance in and Nitrogen Loads from an irrigation district before and after modernization," Agricultural Water Management, Elsevier, vol. 208(C), pages 163-175.
    8. Chilundo, Mario & Joel, Abraham & Wesström, Ingrid & Brito, Rui & Messing, Ingmar, 2018. "Influence of irrigation and fertilisation management on the seasonal distribution of water and nitrogen in a semi-arid loamy sandy soil," Agricultural Water Management, Elsevier, vol. 199(C), pages 120-137.
    9. Žalud, Zdeněk & Hlavinka, Petr & Prokeš, Karel & Semerádová, Daniela & Balek Jan, & Trnka, Miroslav, 2017. "Impacts of water availability and drought on maize yield – A comparison of 16 indicators," Agricultural Water Management, Elsevier, vol. 188(C), pages 126-135.
    10. Folberth, Christian & Yang, Hong & Gaiser, Thomas & Abbaspour, Karim C. & Schulin, Rainer, 2013. "Modeling maize yield responses to improvement in nutrient, water and cultivar inputs in sub-Saharan Africa," Agricultural Systems, Elsevier, vol. 119(C), pages 22-34.
    11. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    12. Rostamza, Mina & Chaichi, Mohammad-Reza & Jahansouz, Mohammad-Reza & Alimadadi, Ahmad, 2011. "Forage quality, water use and nitrogen utilization efficiencies of pearl millet (Pennisetum americanum L.) grown under different soil moisture and nitrogen levels," Agricultural Water Management, Elsevier, vol. 98(10), pages 1607-1614, August.
    13. Wu, Hui & Yue, Qiong & Guo, Ping & Xu, Xiaoyu & Huang, Xi, 2022. "Improving the AquaCrop model to achieve direct simulation of evapotranspiration under nitrogen stress and joint simulation-optimization of irrigation and fertilizer schedules," Agricultural Water Management, Elsevier, vol. 266(C).
    14. Marcos Jiménez Martínez & Christine Fürst, 2021. "Simulating the Capacity of Rainfed Food Crop Species to Meet Social Demands in Sudanian Savanna Agro-Ecologies," Land, MDPI, vol. 10(8), pages 1-28, August.
    15. Malik, Wafa & Dechmi, Farida, 2019. "DSSAT modelling for best irrigation management practices assessment under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 216(C), pages 27-43.
    16. Elżbieta Wójcik-Gront & Marcin Studnicki, 2021. "Long-Term Yield Variability of Triticale (× Triticosecale Wittmack) Tested Using a CART Model," Agriculture, MDPI, vol. 11(2), pages 1-12, January.
    17. Zhang, Hongyuan & Hu, Kelin & Zhang, Lijuan & Ji, Yanzhi & Qin, Wei, 2019. "Exploring optimal catch crops for reducing nitrate leaching in vegetable greenhouse in North China," Agricultural Water Management, Elsevier, vol. 212(C), pages 273-282.
    18. Hu, Kelin & Li, Baoguo & Chen, Deli & Zhang, Yuanpei & Edis, Robert, 2008. "Simulation of nitrate leaching under irrigated maize on sandy soil in desert oasis in Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 95(10), pages 1180-1188, October.
    19. Wang, Huanyuan & Ju, Xiaotang & Wei, Yongping & Li, Baoguo & Zhao, Lulu & Hu, Kelin, 2010. "Simulation of bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain," Agricultural Water Management, Elsevier, vol. 97(10), pages 1646-1654, October.
    20. Liu, Pengzhao & Fan, Zhen & Yan, Zinan & Ren, Xiaolong & Zhao, Xining & Zhang, Jianjun & Chen, Xiaoli, 2024. "Evaluation of N nutrition and optimal fertilizer rate for ridge-furrow mulched maize based on critical N dilution curve under different water conditions," Agricultural Water Management, Elsevier, vol. 296(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8358-:d:426314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.