IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i19p7844-d417744.html
   My bibliography  Save this article

Preparing Society for Automated Vehicles: Perceptions of the Importance and Urgency of Emerging Issues of Governance, Regulations, and Wider Impacts

Author

Listed:
  • Su-Yen Chen

    (Institute of Learning Sciences and Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan)

  • Hsin-Yu Kuo

    (Institute of Learning Sciences and Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan)

  • Chiachun Lee

    (Institute of Learning Sciences and Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan)

Abstract

This study explores the overall picture of how people perceive the importance level and urgency level regarding issues associated with automated vehicles, by sorting out ten issues, developing a questionnaire with 66 measurement items, and investigating how Artificial Intelligence (AI) experts and Computer Science (CS)/Electrical Engineering (EE) majors assessed these issues. The findings suggest that AI experts in Taiwan believed that the top five issues for preparing a society for autonomous vehicles (AVs) should include (1) data privacy and cybersecurity, (2) regulation considerations, (3) infrastructure, (4) governance, and (5) public acceptance. On the other hand, for their student counterparts, the results (1) demonstrate a somewhat different order from the third to the fifth place, (2) show an attention-focused profile on the issue of cybersecurity and data privacy, and (3) indicate that gender and a few wider-impact variables (technology innovation, infrastructure) are significant predictors for the assessment on the importance level of AVs, while some wider-impact variables (technology innovation, governance, economic benefits, infrastructure), which are positively associated, as well as concerns variables (cybersecurity and data privacy, regulations), which are negatively associated, could be predictors for the urgency level of AVs. Suggestions for future research and policymakers are provided.

Suggested Citation

  • Su-Yen Chen & Hsin-Yu Kuo & Chiachun Lee, 2020. "Preparing Society for Automated Vehicles: Perceptions of the Importance and Urgency of Emerging Issues of Governance, Regulations, and Wider Impacts," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:7844-:d:417744
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/19/7844/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/19/7844/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Su-Yen Chen & Chiachun Lee, 2019. "Perceptions of the Impact of High-Level-Machine-Intelligence from University Students in Taiwan: The Case for Human Professions, Autonomous Vehicles, and Smart Homes," Sustainability, MDPI, vol. 11(21), pages 1-14, November.
    2. Liu, Feiqi & Zhao, Fuquan & Liu, Zongwei & Hao, Han, 2019. "Can autonomous vehicle reduce greenhouse gas emissions? A country-level evaluation," Energy Policy, Elsevier, vol. 132(C), pages 462-473.
    3. Tom Cohen & Clémence Cavoli, 2019. "Automated vehicles: exploring possible consequences of government (non)intervention for congestion and accessibility," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 129-151, January.
    4. Luca Staricco & Valentina Rappazzo & Jacopo Scudellari & Elisabetta Vitale Brovarone, 2019. "Toward Policies to Manage the Impacts of Autonomous Vehicles on the City: A Visioning Exercise," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    5. Debbie Hopkins & Tim Schwanen, 2018. "Automated Mobility Transitions: Governing Processes in the UK," Sustainability, MDPI, vol. 10(4), pages 1-19, March.
    6. Dimitris Milakis, 2019. "Long-term implications of automated vehicles: an introduction," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 1-8, January.
    7. Araz Taeihagh & Hazel Si Min Lim, 2019. "Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 103-128, January.
    8. Marletto, Gerardo, 2019. "Who will drive the transition to self-driving? A socio-technical analysis of the future impact of automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 221-234.
    9. Li, Shunxi & Sui, Pang-Chieh & Xiao, Jinsheng & Chahine, Richard, 2019. "Policy formulation for highly automated vehicles: Emerging importance, research frontiers and insights," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 573-586.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan Yigitcanlar & Federico Cugurullo, 2020. "The Sustainability of Artificial Intelligence: An Urbanistic Viewpoint from the Lens of Smart and Sustainable Cities," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    2. Araz Taeihagh, 2021. "Governance of artificial intelligence [Application of artificial intelligence for development of intelligent transport system in smart cities]," Policy and Society, Darryl S. Jarvis and M. Ramesh, vol. 40(2), pages 137-157.
    3. Tanvi Maheshwari & Kay W. Axhausen, 2021. "How Will the Technological Shift in Transportation Impact Cities? A Review of Quantitative Studies on the Impacts of New Transportation Technologies," Sustainability, MDPI, vol. 13(6), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pel, Bonno & Raven, Rob & van Est, Rinie, 2020. "Transitions governance with a sense of direction: synchronization challenges in the case of the dutch ‘Driverless Car’ transition," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    2. Olin, Janne J. & Mladenović, Miloš N., 2024. "Unpacking the cultural aspects of transport automation governance in Finland: An interview study," Journal of Transport Geography, Elsevier, vol. 117(C).
    3. Khan, Shah Khalid & Shiwakoti, Nirajan & Stasinopoulos, Peter & Warren, Matthew, 2023. "Cybersecurity regulatory challenges for connected and automated vehicles – State-of-the-art and future directions," Transport Policy, Elsevier, vol. 143(C), pages 58-71.
    4. Chris Tennant & Susan Howard & Sally Stares, 2021. "Building the UK vision of a driverless future: A Parliamentary Inquiry case study," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-14, December.
    5. Shelly Etzioni & Jamil Hamadneh & Arnór B. Elvarsson & Domokos Esztergár-Kiss & Milena Djukanovic & Stelios N. Neophytou & Jaka Sodnik & Amalia Polydoropoulou & Ioannis Tsouros & Cristina Pronello & N, 2020. "Modeling Cross-National Differences in Automated Vehicle Acceptance," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    6. Wang, Fei & Zhang, Zhentai & Lin, Shoufu, 2023. "Purchase intention of Autonomous vehicles and industrial Policies: Evidence from a national survey in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    7. Bahrami, Sina & Roorda, Matthew J., 2020. "Optimal traffic management policies for mixed human and automated traffic flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 130-143.
    8. Roberto Battistini & Luca Mantecchini & Maria Nadia Postorino, 2020. "Users’ Acceptance of Connected and Automated Shuttles for Tourism Purposes: A Survey Study," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
    9. Hazel Si Min Lim & Araz Taeihagh, 2019. "Algorithmic Decision-Making in AVs: Understanding Ethical and Technical Concerns for Smart Cities," Sustainability, MDPI, vol. 11(20), pages 1-28, October.
    10. Pan, Yuchen & Wu, Yu & Xu, Lu & Xia, Chengyi & Olson, David L., 2024. "The impacts of connected autonomous vehicles on mixed traffic flow: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    11. Hansson, Lisa, 2020. "Regulatory governance in emerging technologies: The case of autonomous vehicles in Sweden and Norway," Research in Transportation Economics, Elsevier, vol. 83(C).
    12. Luca Staricco & Valentina Rappazzo & Jacopo Scudellari & Elisabetta Vitale Brovarone, 2019. "Toward Policies to Manage the Impacts of Autonomous Vehicles on the City: A Visioning Exercise," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    13. Ishant Sharma & Sabyasachee Mishra, 2023. "Ranking preferences towards adopting autonomous vehicles based on peer inputs and advertisements," Transportation, Springer, vol. 50(6), pages 2139-2192, December.
    14. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    15. Wali, Behram & Santi, Paolo & Ratti, Carlo, 2023. "Are californians willing to use shared automated vehicles (SAV) & renounce existing vehicles? An empirical analysis of factors determining SAV use & household vehicle ownership," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    16. Nemoto, Eliane Horschutz & Korbee, Dorien & Jaroudi, Ines & Viere, Tobias & Naderer, Gabriele & Fournier, Guy, 2023. "Integrating automated minibuses into mobility systems – Socio-technical transitions analysis and multi-level perspectives," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    17. Mohammed Al-Turki & Nedal T. Ratrout & Syed Masiur Rahman & Imran Reza, 2021. "Impacts of Autonomous Vehicles on Traffic Flow Characteristics under Mixed Traffic Environment: Future Perspectives," Sustainability, MDPI, vol. 13(19), pages 1-22, October.
    18. Nastjuk, Ilja & Herrenkind, Bernd & Marrone, Mauricio & Brendel, Alfred Benedikt & Kolbe, Lutz M., 2020. "What drives the acceptance of autonomous driving? An investigation of acceptance factors from an end-user's perspective," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    19. Hamadneh, Jamil & Duleba, Szabolcs & Esztergár-Kiss, Domokos, 2022. "Stakeholder viewpoints analysis of the autonomous vehicle industry by using multi-actors multi-criteria analysis," Transport Policy, Elsevier, vol. 126(C), pages 65-84.
    20. Cohen, Scott A. & Hopkins, Debbie, 2019. "Autonomous vehicles and the future of urban tourism," Annals of Tourism Research, Elsevier, vol. 74(C), pages 33-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:7844-:d:417744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.