IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i19p7837-d417588.html
   My bibliography  Save this article

Frameworks on Patterns of Grasslands’ Sensitivity to Forecast Extreme Drought

Author

Listed:
  • Taofeek O. Muraina

    (National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    Department of Animal Health and Production, Oyo State College of Agriculture and Technology, P.M.B. 10, Igbo-Ora 201103, Oyo State, Nigeria)

Abstract

Climate models have predicted the future occurrence of extreme drought (ED). The management, conservation, or restoration of grasslands following ED requires a robust prior knowledge of the patterns and mechanisms of sensitivity—declining rate of ecosystem functions due to ED. Yet, the global-scale pattern of grasslands’ sensitivity to any ED event remains unresolved. Here, frameworks were built to predict the sensitivity patterns of above-ground net primary productivity (ANPP) spanning the global precipitation gradient under ED. The frameworks particularly present three sensitivity patterns that could manipulate (weaken, strengthen, or erode) the orthodox positive precipitation–productivity relationship which exists under non-drought (ambient) condition. First, the slope of the relationship could become steeper via higher sensitivity at xeric sites than mesic and hydric ones. Second, if the sensitivity emerges highest in hydric, followed by mesic, then xeric, a weakened slope, flat line, or negative slope would emerge. Lastly, if the sensitivity emerges unexpectedly similar across the precipitation gradient, the slope of the relationship would remain similar to that of the ambient condition. Overall, the frameworks provide background knowledge on possible differences or similarities in responses of grasslands to forecast ED, and could stimulate increase in conduct of experiments to unravel the impacts of ED on grasslands. More importantly, the frameworks indicate the need for reconciliation of conflicting hypotheses of grasslands’ sensitivity to ED through global-scale experiments.

Suggested Citation

  • Taofeek O. Muraina, 2020. "Frameworks on Patterns of Grasslands’ Sensitivity to Forecast Extreme Drought," Sustainability, MDPI, vol. 12(19), pages 1-13, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:7837-:d:417588
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/19/7837/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/19/7837/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chonggang Xu & Nate G. McDowell & Rosie A. Fisher & Liang Wei & Sanna Sevanto & Bradley O. Christoffersen & Ensheng Weng & Richard S. Middleton, 2019. "Increasing impacts of extreme droughts on vegetation productivity under climate change," Nature Climate Change, Nature, vol. 9(12), pages 948-953, December.
    2. Zhiyuan Ma & Huiying Liu & Zhaorong Mi & Zhenhua Zhang & Yonghui Wang & Wei Xu & Lin Jiang & Jin-Sheng He, 2017. "Climate warming reduces the temporal stability of plant community biomass production," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
    3. Travis E. Huxman & Melinda D. Smith & Philip A. Fay & Alan K. Knapp & M. Rebecca Shaw & Michael E. Loik & Stanley D. Smith & David T. Tissue & John C. Zak & Jake F. Weltzin & William T. Pockman & Osva, 2004. "Convergence across biomes to a common rain-use efficiency," Nature, Nature, vol. 429(6992), pages 651-654, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emma Sumner & Susanna Venn, 2021. "Plant Responses to Changing Water Supply and Availability in High Elevation Ecosystems: A Quantitative Systematic Review and Meta-Analysis," Land, MDPI, vol. 10(11), pages 1-17, October.
    2. Akpalu, Wisdom & Vondolia, Godwin K. & Adom, Phillip K. & Peprah, Dorcas Asaah, 2023. "Passive Participation in Illegal Fishing and the Welfare of Fishmongers in a Developing Country," EfD Discussion Paper 23-9, Environment for Development, University of Gothenburg.
    3. Wang, Yuehua & Wang, Zhongwu & Wu, Lianhai & Li, Haigang & Li, Jiangwen & Zhu, Aimin & Jin, Yuxi & Han, Guodong, 2024. "Effects of grazing and climate change on aboveground standing biomass and sheep live weight changes in the desert steppe in Inner Mongolia, China," Agricultural Systems, Elsevier, vol. 217(C).
    4. Xiumei Wang & Jianjun Dong & Taogetao Baoyin & Yuhai Bao, 2019. "Estimation and Climate Factor Contribution of Aboveground Biomass in Inner Mongolia’s Typical/Desert Steppes," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    5. Luo, Erga & Yan, Ru & He, Yaping & Han, Zhen & Feng, Yiyu & Qian, Wenrong & Li, Jinkai, 2024. "Does biogas industrial policy promote the industrial transformation?," Resources Policy, Elsevier, vol. 88(C).
    6. Shulin Chen & Zhenghao Zhu & Xiaotong Liu & Li Yang, 2022. "Variation in Vegetation and Its Driving Force in the Pearl River Delta Region of China," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    7. Cai, Qingyin & Çakır, Metin & Beatty, Timothy & Park, Timothy A., 2022. "Drought and the Specialty Crops Production in California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322530, Agricultural and Applied Economics Association.
    8. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Sileshi, Gudeta W. & Akinnifesi, Festus K. & Ajayi, Oluyede C. & Muys, Bart, 2011. "Integration of legume trees in maize-based cropping systems improves rain use efficiency and yield stability under rain-fed agriculture," Agricultural Water Management, Elsevier, vol. 98(9), pages 1364-1372, July.
    10. Zhao, Tianxing & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Jia, Biao & Mao, Wei & Wu, Jingwei, 2022. "A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements," Agricultural Water Management, Elsevier, vol. 264(C).
    11. Adama A. Gross & Uriah G. Bailey & Inioluwa Ogunseye, 2024. "Corruption, Prebendalism and the Fragile State: A Case Study on Liberia," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(2), pages 1445-1457, February.
    12. Pirzad, Alireza & Mohammadzadeh, Sevil, 2018. "Water use efficiency of three mycorrhizal Lamiaceae species (Lavandula officinalis, Rosmarinus officinalis and Thymus vulgaris)," Agricultural Water Management, Elsevier, vol. 204(C), pages 1-10.
    13. Houkun Chu & Hong Ni & Jingyong Ma & Yuying Shen, 2022. "Effect of Precipitation Variation on Soil Respiration in Rain-Fed Winter Wheat Systems on the Loess Plateau, China," IJERPH, MDPI, vol. 19(11), pages 1-18, June.
    14. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Yanxi Zhao & Dengpan Xiao & Huizi Bai & Jianzhao Tang & De Li Liu & Yongqing Qi & Yanjun Shen, 2022. "The Prediction of Wheat Yield in the North China Plain by Coupling Crop Model with Machine Learning Algorithms," Agriculture, MDPI, vol. 13(1), pages 1-19, December.
    16. David L. Miller & Sebastian Wolf & Joshua B. Fisher & Benjamin F. Zaitchik & Jingfeng Xiao & Trevor F. Keenan, 2023. "Increased photosynthesis during spring drought in energy-limited ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Rui Yin & Wenkuan Qin & Xudong Wang & Dong Xie & Hao Wang & Hongyang Zhao & Zhenhua Zhang & Jin-Sheng He & Martin Schädler & Paul Kardol & Nico Eisenhauer & Biao Zhu, 2023. "Experimental warming causes mismatches in alpine plant-microbe-fauna phenology," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Shijie Zhou & Yiqiang Dong & Asitaiken Julihaiti & Tingting Nie & Anjing Jiang & Shazhou An, 2022. "Spatial Variation in Desert Spring Vegetation Biomass, Richness and Their Environmental Controls in the Arid Region of Central Asia," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    19. Yaoping Wang & Jiafu Mao & Forrest M. Hoffman & Céline J. W. Bonfils & Hervé Douville & Mingzhou Jin & Peter E. Thornton & Daniel M. Ricciuto & Xiaoying Shi & Haishan Chen & Stan D. Wullschleger & Shi, 2022. "Quantification of human contribution to soil moisture-based terrestrial aridity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Xiangtao Wang & Zhigang Hu & Ziwei Zhang & Jiwang Tang & Ben Niu, 2024. "Altitude-Shifted Climate Variables Dominate the Drought Effects on Alpine Grasslands over the Qinghai–Tibetan Plateau," Sustainability, MDPI, vol. 16(15), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:7837-:d:417588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.