IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7623-d414217.html
   My bibliography  Save this article

The Role of Education in Increasing Awareness and Reducing Impact of Natural Hazards

Author

Listed:
  • David Cerulli

    (Centre of Natural Science Education, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia)

  • Michael Scott

    (Department of Geography and Geosciences, Salisbury University, 1101 Camden Avenue, Salisbury, MD 21801, USA)

  • Raivo Aunap

    (Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia)

  • Ain Kull

    (Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia)

  • Jaan Pärn

    (Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia)

  • Jack Holbrook

    (Centre of Natural Science Education, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia)

  • Ülo Mander

    (Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia)

Abstract

Education could play a role in decreasing and mitigating damages caused by natural disaster. By analysing relationships between level of education and components of the World Risk Index, this study demonstrated an education’s role in natural hazard awareness and mitigation. For this purpose, we analysed relationships between the components of WRI, created an education factor independent of WRI (based on PISA 2018 Science test results), analysed the frequency, magnitude and exposure of natural hazards of an extreme event character in selected countries and analysed the relationships between the education factor and WRI components among the countries. A detailed analysis was performed for 15 countries representing the full global range of natural hazards (frequency, magnitude and exposure to droughts, earthquakes, hurricanes, floods (not related to hurricanes), mass movements, volcanic eruptions, and tsunamis) and level of education. We found that the education factor (ranked and normalised to the maximal value among the considered countries) has significant negative correlation with the following WRI parameters: the Natural Hazard Factor (relative vulnerability, based on the difference between the relative and calculated WRI, ranked and normalised to the maximal value of WRI differences), susceptibility, lack of coping capacities and lack of adaptive capacities (all ranked and normalised to the maximal value). Results indicated that countries at low risk tend to be over-aware while countries at high risk are under-aware of natural hazards. Education can significantly increase awareness of natural hazards and reduce their impact.

Suggested Citation

  • David Cerulli & Michael Scott & Raivo Aunap & Ain Kull & Jaan Pärn & Jack Holbrook & Ülo Mander, 2020. "The Role of Education in Increasing Awareness and Reducing Impact of Natural Hazards," Sustainability, MDPI, vol. 12(18), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7623-:d:414217
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7623/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7623/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miguel Esteban & Jeremy Bricker & Ricardo San Carlos Arce & Hiroshi Takagi & NamYi Yun & Warathida Chaiyapa & Alexander Sjoegren & Tomoya Shibayama, 2018. "Tsunami awareness: a comparative assessment between Japan and the USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1507-1528, September.
    2. Stijn Temmerman & Patrick Meire & Tjeerd J. Bouma & Peter M. J. Herman & Tom Ysebaert & Huib J. De Vriend, 2013. "Ecosystem-based coastal defence in the face of global change," Nature, Nature, vol. 504(7478), pages 79-83, December.
    3. Amir AghaKouchak & Laurie S. Huning & Felicia Chiang & Mojtaba Sadegh & Farshid Vahedifard & Omid Mazdiyasni & Hamed Moftakhari & Iman Mallakpour, 2018. "How do natural hazards cascade to cause disasters?," Nature, Nature, vol. 561(7724), pages 458-460, September.
    4. Douglas Paton & Robert Bajek & Norio Okada & David McIvor, 2010. "Predicting community earthquake preparedness: a cross-cultural comparison of Japan and New Zealand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 765-781, September.
    5. Paula Dunbar, 2007. "Increasing public awareness of natural hazards via the Internet," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(3), pages 529-536, September.
    6. Rodrigo Rudge Ramos Ribeiro & Samia Nascimento Sulaiman & Michelle Bonatti & Stefan Sieber & Marcos Alberto Lana, 2020. "Perception of Natural Hazards in Rural Areas: A Case Study Examination of the Influence of Seasonal Weather," Sustainability, MDPI, vol. 12(6), pages 1-13, March.
    7. Gianluca Pescaroli & David Alexander, 2016. "Critical infrastructure, panarchies and the vulnerability paths of cascading disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 175-192, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian Gong & Yushan Duan & Fengtao Guo, 2021. "Disaster Risk Reduction Education in School Geography Curriculum: Review and Outlook from a Perspective of China," Sustainability, MDPI, vol. 13(7), pages 1-16, April.
    2. Juliet Akola & James Chakwizira & Emaculate Ingwani & Peter Bikam, 2023. "Awareness Level of Spatial Planning Tools for Disaster Risk Reduction in Informal Settlements in Mopani District, South Africa," Sustainability, MDPI, vol. 15(6), pages 1-13, March.
    3. Shingirai Mugambiwa & Jabulani Makhubele, 2021. "Anthropogenic flash floods and climate change in rural Zimbabwe: Impacts and options for adaptation," Technium Social Sciences Journal, Technium Science, vol. 21(1), pages 809-819, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danielsson, Erna & Nyhlén, Jon & Olausson, Pär M., 2020. "Strategic planning for power shortages," Energy Policy, Elsevier, vol. 137(C).
    2. Rahimi-Golkhandan, Armin & Garvin, Michael J. & Brown, Bryan L., 2019. "Characterizing and measuring transportation infrastructure diversity through linkages with ecological stability theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 114-130.
    3. Yingxin Chen & Jing Zhang & Pandu R. Tadikamalla & Lei Zhou, 2019. "The Mechanism of Social Organization Participation in Natural Hazards Emergency Relief: A Case Study Based on the Social Network Analysis," IJERPH, MDPI, vol. 16(21), pages 1-20, October.
    4. Gerald Schernewski & Lars Niklas Voeckler & Leon Lambrecht & Esther Robbe & Johanna Schumacher, 2022. "Building with Nature—Ecosystem Service Assessment of Coastal-Protection Scenarios," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    5. Lam Thi Mai Huynh & Jie Su & Quanli Wang & Lindsay C. Stringer & Adam D. Switzer & Alexandros Gasparatos, 2024. "Meta-analysis indicates better climate adaptation and mitigation performance of hybrid engineering-natural coastal defence measures," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Pérez-Maqueo, Octavio & Martínez, M. Luisa & Cóscatl Nahuacatl, Rosendo, 2017. "Is the protection of beach and dune vegetation compatible with tourism?," Tourism Management, Elsevier, vol. 58(C), pages 175-183.
    7. Randell, Heather & Jiang, Chengsheng & Liang, Xin-Zhong & Murtugudde, Raghu & Sapkota, Amir, 2021. "Food insecurity and compound environmental shocks in Nepal: Implications for a changing climate," World Development, Elsevier, vol. 145(C).
    8. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    9. Zhiyi Lin & Minerva Singh, 2024. "Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    10. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    11. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    12. Arnaud Mignan & Ziqi Wang, 2020. "Exploring the Space of Possibilities in Cascading Disasters with Catastrophe Dynamics," IJERPH, MDPI, vol. 17(19), pages 1-21, October.
    13. Takahiro Tsuge & Yasushi Shoji & Koichi Kuriyama & Ayumi Onuma, 2022. "Using a Choice Experiment to Understand Preferences for Disaster Risk Reduction with Uncertainty: A Case Study in Japan," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    14. Chahrour, Nour & Bérenguer, Christophe & Tacnet, Jean-Marc, 2024. "Incorporating cascading effects analysis in the maintenance policy assessment of torrent check dams against torrential floods," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    15. Strain, E.M.A. & Kompas, T. & Boxshall, A. & Kelvin, J. & Swearer, S. & Morris, R.L., 2022. "Assessing the coastal protection services of natural mangrove forests and artificial rock revetments," Ecosystem Services, Elsevier, vol. 55(C).
    16. Carus, Jana & Heuner, Maike & Paul, Maike & Schröder, Boris, 2017. "Which factors and processes drive the spatio-temporal dynamics of brackish marshes?—Insights from development and parameterisation of a mechanistic vegetation model," Ecological Modelling, Elsevier, vol. 363(C), pages 122-136.
    17. Maria Fabrizia Clemente & Valeria D’Ambrosio & Ferdinando Di Martino & Vittorio Miraglia, 2023. "Quantify the Contribution of Nature-Based Solutions in Reducing the Impacts of Hydro-Meteorological Hazards in the Urban Environment: A Case Study in Naples, Italy," Land, MDPI, vol. 12(3), pages 1-20, February.
    18. Priscila Celebrini de Oliveira Campos & Tainá da Silva Rocha Paz & Letícia Lenz & Yangzi Qiu & Camila Nascimento Alves & Ana Paula Roem Simoni & José Carlos Cesar Amorim & Gilson Brito Alves Lima & Ma, 2020. "Multi-Criteria Decision Method for Sustainable Watercourse Management in Urban Areas," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    19. Dingde Xu & Chen Qing & Xin Deng & Zhuolin Yong & Wenfeng Zhou & Zhixing Ma, 2020. "Disaster Risk Perception, Sense of Pace, Evacuation Willingness, and Relocation Willingness of Rural Households in Earthquake-Stricken Areas: Evidence from Sichuan Province, China," IJERPH, MDPI, vol. 17(2), pages 1-19, January.
    20. Stanley, Rebecca E. & Bilskie, Matthew V. & Woodson, C. Brock & Byers, James E., 2024. "A model for understanding the effects of flow conditions on oyster reef development and impacts to wave attenuation," Ecological Modelling, Elsevier, vol. 489(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7623-:d:414217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.