IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7354-d410382.html
   My bibliography  Save this article

Energy Management Optimization of Series Hybrid Electric Bus Using an Ultra-Capacitor and Novel Efficiency Improvement Factors

Author

Listed:
  • Giyeon Hwang

    (Department of Mechanical Engineering, Myongji University, Building 1, Room 212, 116 Myongji-ro, Yongin-si, Gyeonggi-do 17058, Korea)

  • Kyungmin Lee

    (Department of Mechanical Engineering, Myongji University, Building 1, Room 212, 116 Myongji-ro, Yongin-si, Gyeonggi-do 17058, Korea)

  • Jongmyung Kim

    (Department of Mechanical Engineering, Myongji University, Building 1, Room 212, 116 Myongji-ro, Yongin-si, Gyeonggi-do 17058, Korea)

  • Kyu-Jin Lee

    (Department of Mechanical Engineering, Myongji University, Building 1, Room 212, 116 Myongji-ro, Yongin-si, Gyeonggi-do 17058, Korea)

  • Sangyul Lee

    (Devision of Mechanical and Electronics Engineerin, Hansung University, 116, Samseongyo-ro 16-gil, Seongbuk-gu, Seoul 02876, Korea)

  • Minjae Kim

    (Department of Mechanical Engineering, Myongji University, Building 1, Room 212, 116 Myongji-ro, Yongin-si, Gyeonggi-do 17058, Korea)

Abstract

The existing series hybrid electric bus (SHEB) uses an ultra-capacitor (UC) to extend battery life, mitigate vehicle weight, and reduce cost. However, previous studies did not clearly identify the operation timing and load of the UC for efficiency improvement in an SHEB. This paper proposes novel efficiency improvement factors, with their application criteria for the ideal operation timing and load of the UC in an SHEB. The factors are the threshold of the required power of the motor (TRPM), slope of the power split ratio (SPSR), and y-axis intercept of the power split ratio (YPSR). The TRPM determines the duration of using just the battery. The SPSR or YPSR determine the most efficient load ratio between the battery and UC. The criteria for using them are set using particle swarm optimization. Manhattan, Braunschweig, and Orange County driving cycles were used to reflect various road load conditions. The results showed that the proposed factors and their setting criteria guarantee a significant reduction in the fuel consumption and more energy-efficient SHEBs.

Suggested Citation

  • Giyeon Hwang & Kyungmin Lee & Jongmyung Kim & Kyu-Jin Lee & Sangyul Lee & Minjae Kim, 2020. "Energy Management Optimization of Series Hybrid Electric Bus Using an Ultra-Capacitor and Novel Efficiency Improvement Factors," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7354-:d:410382
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7354/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7354/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Zeyu & Xiong, Rui & Cao, Jiayi, 2016. "Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions," Energy, Elsevier, vol. 96(C), pages 197-208.
    2. Yuping Zeng & Yang Cai & Guiyue Kou & Wei Gao & Datong Qin, 2018. "Energy Management for Plug-In Hybrid Electric Vehicle Based on Adaptive Simplified-ECMS," Sustainability, MDPI, vol. 10(6), pages 1-24, June.
    3. M. Sabri, M.F. & Danapalasingam, K.A. & Rahmat, M.F., 2016. "A review on hybrid electric vehicles architecture and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1433-1442.
    4. He, Hongwen & Xiong, Rui & Zhao, Kai & Liu, Zhentong, 2013. "Energy management strategy research on a hybrid power system by hardware-in-loop experiments," Applied Energy, Elsevier, vol. 112(C), pages 1311-1317.
    5. Shaobo Xie & Xiaosong Hu & Kun Lang & Shanwei Qi & Tong Liu, 2018. "Powering Mode-Integrated Energy Management Strategy for a Plug-In Hybrid Electric Truck with an Automatic Mechanical Transmission Based on Pontryagin’s Minimum Principle," Sustainability, MDPI, vol. 10(10), pages 1-23, October.
    6. Song, Ziyou & Li, Jianqiu & Han, Xuebing & Xu, Liangfei & Lu, Languang & Ouyang, Minggao & Hofmann, Heath, 2014. "Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 135(C), pages 212-224.
    7. Chen, Syuan-Yi & Wu, Chien-Hsun & Hung, Yi-Hsuan & Chung, Cheng-Ta, 2018. "Optimal strategies of energy management integrated with transmission control for a hybrid electric vehicle using dynamic particle swarm optimization," Energy, Elsevier, vol. 160(C), pages 154-170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin Li & Feng Wang & Yu He, 2020. "Electric Vehicle Routing Problem with Battery Swapping Considering Energy Consumption and Carbon Emissions," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    2. Nikita V. Martyushev & Boris V. Malozyomov & Ilham H. Khalikov & Viktor Alekseevich Kukartsev & Vladislav Viktorovich Kukartsev & Vadim Sergeevich Tynchenko & Yadviga Aleksandrovna Tynchenko & Mengxu , 2023. "Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Consumption," Energies, MDPI, vol. 16(2), pages 1-39, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jibin & Xu, Xiaohui & Peng, Yiqiang & Zhang, Jiye & Song, Pengyun, 2019. "Modeling and optimal energy management strategy for a catenary-battery-ultracapacitor based hybrid tramway," Energy, Elsevier, vol. 183(C), pages 1123-1135.
    2. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
    3. Diana Lemian & Florin Bode, 2022. "Battery-Supercapacitor Energy Storage Systems for Electrical Vehicles: A Review," Energies, MDPI, vol. 15(15), pages 1-13, August.
    4. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
    6. Hu, Lin & Tian, Qingtao & Zou, Changfu & Huang, Jing & Ye, Yao & Wu, Xianhui, 2022. "A study on energy distribution strategy of electric vehicle hybrid energy storage system considering driving style based on real urban driving data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Li, Ji & Zhou, Quan & He, Yinglong & Shuai, Bin & Li, Ziyang & Williams, Huw & Xu, Hongming, 2019. "Dual-loop online intelligent programming for driver-oriented predict energy management of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Hu, Jiayi & Li, Jianqiu & Hu, Zunyan & Xu, Liangfei & Ouyang, Minggao, 2021. "Power distribution strategy of a dual-engine system for heavy-duty hybrid electric vehicles using dynamic programming," Energy, Elsevier, vol. 215(PA).
    9. Randive, Vaibhav & Subramanian, Shankar C. & Thondiyath, Asokan, 2021. "Design and analysis of a hybrid electric powertrain for military tracked vehicles," Energy, Elsevier, vol. 229(C).
    10. Wang, Siyang & Lin, Xianke, 2020. "Eco-driving control of connected and automated hybrid vehicles in mixed driving scenarios," Applied Energy, Elsevier, vol. 271(C).
    11. Sadam Hussain & Muhammad Umair Ali & Gwan-Soo Park & Sarvar Hussain Nengroo & Muhammad Adil Khan & Hee-Je Kim, 2019. "A Real-Time Bi-Adaptive Controller-Based Energy Management System for Battery–Supercapacitor Hybrid Electric Vehicles," Energies, MDPI, vol. 12(24), pages 1-24, December.
    12. Ahmed M. Ali & Dirk Söffker, 2018. "Towards Optimal Power Management of Hybrid Electric Vehicles in Real-Time: A Review on Methods, Challenges, and State-Of-The-Art Solutions," Energies, MDPI, vol. 11(3), pages 1-24, February.
    13. Bin Tang & Di Zhang & Haobin Jiang & Yinqiu Huang, 2020. "Optimization of Energy Management Strategy for the EPS with Hybrid Power Supply Based on PSO Algorithm," Energies, MDPI, vol. 13(2), pages 1-13, January.
    14. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    15. Jun Peng & Rui Wang & Hongtao Liao & Yanhui Zhou & Heng Li & Yue Wu & Zhiwu Huang, 2019. "A Real-Time Layer-Adaptive Wavelet Transform Energy Distribution Strategy in a Hybrid Energy Storage System of EVs," Energies, MDPI, vol. 12(3), pages 1-17, January.
    16. Liu, Hanwu & Lei, Yulong & Fu, Yao & Li, Xingzhong, 2022. "A novel hybrid-point-line energy management strategy based on multi-objective optimization for range-extended electric vehicle," Energy, Elsevier, vol. 247(C).
    17. Farmann, Alexander & Waag, Wladislaw & Sauer, Dirk Uwe, 2016. "Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles," Energy, Elsevier, vol. 112(C), pages 294-306.
    18. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    19. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    20. Xiong, Rui & Duan, Yanzhou & Cao, Jiayi & Yu, Quanqing, 2018. "Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle," Applied Energy, Elsevier, vol. 217(C), pages 153-165.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7354-:d:410382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.