IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i16p6611-d399407.html
   My bibliography  Save this article

Effect of Irrigation Systems and Soil Conditioners on the Growth and Essential Oil Composition of Rosmarinus officinalis L. Cultivated in Egypt

Author

Listed:
  • Elsayed Omer

    (Medicinal and Aromatic Plants Research Department, National Research Centre, Dokki 12622, Cairo, Egypt)

  • Saber Hendawy

    (Medicinal and Aromatic Plants Research Department, National Research Centre, Dokki 12622, Cairo, Egypt)

  • Abdel Nasser ElGendy

    (Medicinal and Aromatic Plants Research Department, National Research Centre, Dokki 12622, Cairo, Egypt)

  • Alberto Mannu

    (Department of Chemistry and Pharmacy, Sassari University, 07100 Sassari, Italy
    Department of Chemistry, University of Turin, via Pietro Giuria 7, 10125 Turin, Italy)

  • Giacomo L. Petretto

    (Department of Chemistry and Pharmacy, Sassari University, 07100 Sassari, Italy)

  • Giorgio Pintore

    (Department of Chemistry and Pharmacy, Sassari University, 07100 Sassari, Italy)

Abstract

A relevant improvement of the cultivar conditions of Rosmarinus officinalis L. in desert areas was achieved by a specific combination between an irrigation system and soil conditioner. A drastic reduction in water employment was obtained without affecting the quality of the plants, which was determined by monitoring the growth parameters and essential oil characteristics. In particular, the effect of surface and subsurface drip irrigation systems and different soil conditioners on the growth parameters, yield, and essential oil constituents of rosemary plants was assessed. Field experiments at the Agricultural Research Station (Al-Adlya farm), SEKEM Group Company, El-Sharkiya Governorate, Egypt, conducted over the two seasons, revealed the effectiveness of subsurface irrigation systems in obtaining better performances, especially in terms of saving water. The combination of subsurface irrigation and the conditioner HUNDZ soil with bentonite showed the maximum mean values of growth characteristics compared with other soil amendments during both seasons. The possibility to employ a water-saving irrigation system at the subsurface level without any drawback in the resulting plants was also explored in terms of molecular composition. Gas chromatography-mass (GC-MS) analysis of the essential oils extracted from plants grown under different irrigation conditions revealed a comparable composition in both cases. The quality of the system that showed the best performance was also confirmed by the comparable yield of the essential oil.

Suggested Citation

  • Elsayed Omer & Saber Hendawy & Abdel Nasser ElGendy & Alberto Mannu & Giacomo L. Petretto & Giorgio Pintore, 2020. "Effect of Irrigation Systems and Soil Conditioners on the Growth and Essential Oil Composition of Rosmarinus officinalis L. Cultivated in Egypt," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6611-:d:399407
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/16/6611/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/16/6611/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hanson, B. & May, D., 2004. "Effect of subsurface drip irrigation on processing tomato yield, water table depth, soil salinity, and profitability," Agricultural Water Management, Elsevier, vol. 68(1), pages 1-17, July.
    2. Al-Jamal, M. S. & Ball, S. & Sammis, T. W., 2001. "Comparison of sprinkler, trickle and furrow irrigation efficiencies for onion production," Agricultural Water Management, Elsevier, vol. 46(3), pages 253-266, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salvatore La Bella & Giuseppe Virga & Nicolò Iacuzzi & Mario Licata & Leo Sabatino & Beppe Benedetto Consentino & Claudio Leto & Teresa Tuttolomondo, 2020. "Effects of Irrigation, Peat-Alternative Substrate and Plant Habitus on the Morphological and Production Characteristics of Sicilian Rosemary ( Rosmarinus officinalis L.) Biotypes Grown in Pot," Agriculture, MDPI, vol. 11(1), pages 1-15, December.
    2. Alexios Lolas & Aikaterini Molla & Konstantinos Georgiou & Chrysoula Apostologamvrou & Alexandra Petrotou & Konstantinos Skordas, 2024. "Effect of Mussel Shells as Soil pH Amendment on the Growth and Productivity of Rosemary ( Rosmarinus officinalis L.) Cultivation," Agriculture, MDPI, vol. 14(1), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gheysari, Mahdi & Mirlatifi, Seyed Majid & Bannayan, Mohammad & Homaee, Mehdi & Hoogenboom, Gerrit, 2009. "Interaction of water and nitrogen on maize grown for silage," Agricultural Water Management, Elsevier, vol. 96(5), pages 809-821, May.
    2. D. Kalfountzos & I. Alexiou & S. Kotsopoulos & G. Zavakos & P. Vyrlas, 2007. "Effect of Subsurface Drip Irrigation on Cotton Plantations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(8), pages 1341-1351, August.
    3. Sharma, Parmodh & Shukla, Manoj K. & Sammis, Theodore W. & Steiner, Robert L. & Mexal, John G., 2012. "Nitrate-nitrogen leaching from three specialty crops of New Mexico under furrow irrigation system," Agricultural Water Management, Elsevier, vol. 109(C), pages 71-80.
    4. Zhangzhong, Lili & Yang, Peiling & Zhen, Wengang & Zhang, Xin & Wang, Caiyuan, 2019. "A kinetic model for the chemical clogging of drip irrigation system using saline water," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    5. Darwish, T.M. & Atallah, T.W. & Hajhasan, S. & Haidar, A., 2006. "Nitrogen and water use efficiency of fertigated processing potato," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 95-104, September.
    6. Yu, Yingduo & Shihong, Gong & Xu, Di & Jiandong, Wang & Ma, Xiaopeng, 2010. "Effects of Treflan injection on winter wheat growth and root clogging of subsurface drippers," Agricultural Water Management, Elsevier, vol. 97(5), pages 723-730, May.
    7. Hanson, Blaine R. & May, Donald M., 2006. "Crop coefficients for drip-irrigated processing tomato," Agricultural Water Management, Elsevier, vol. 81(3), pages 381-399, March.
    8. Selim, E.M. & Mosa, A.A. & El-Ghamry, A.M., 2009. "Evaluation of humic substances fertigation through surface and subsurface drip irrigation systems on potato grown under Egyptian sandy soil conditions," Agricultural Water Management, Elsevier, vol. 96(8), pages 1218-1222, August.
    9. Z. Ghaffari Moghadam & E. Moradi & M. Hashemi Tabar & A. Sardar Shahraki, 2023. "Developing a Bi-level programming model for water allocation based on Nerlove’s supply response theory and water market," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5663-5689, June.
    10. Hassanli, Ali Morad & Ahmadirad, Shahram & Beecham, Simon, 2010. "Evaluation of the influence of irrigation methods and water quality on sugar beet yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 97(2), pages 357-362, February.
    11. Mishari A. Alnaim & Magdy S. Mohamed & Maged Mohammed & Muhammad Munir, 2022. "Effects of Automated Irrigation Systems and Water Regimes on Soil Properties, Water Productivity, Yield and Fruit Quality of Date Palm," Agriculture, MDPI, vol. 12(3), pages 1-21, February.
    12. He, Yuelin & Xi, Benye & Li, Guangde & Wang, Ye & Jia, Liming & Zhao, Dehai, 2021. "Influence of drip irrigation, nitrogen fertigation, and precipitation on soil water and nitrogen distribution, tree seasonal growth and nitrogen uptake in young triploid poplar (Populus tomentosa) pla," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    14. Qassim, Abdi & Dunin, Frank & Bethune, Matthew, 2008. "Water balance of centre pivot irrigated pasture in northern Victoria, Australia," Agricultural Water Management, Elsevier, vol. 95(5), pages 566-574, May.
    15. Descheemaeker, K. & Bunting, S. W. & Bindraban, P. & Muthuri, C. & Molden, D. & Beveridge, M. & van Brakel, Martin & Herrero, M. & Clement, Floriane & Boelee, Eline & Jarvis, D. I., 2013. "Increasing water productivity in Agriculture," Book Chapters,, International Water Management Institute.
    16. Pelter, Gary Q. & Mittelstadt, Robert & Leib, Brian G. & Redulla, Cristoti A., 2004. "Effects of water stress at specific growth stages on onion bulb yield and quality," Agricultural Water Management, Elsevier, vol. 68(2), pages 107-115, August.
    17. Tolk, Judy A. & Howell, Terry A., 2003. "Water use efficiencies of grain sorghum grown in three USA southern Great Plains soils," Agricultural Water Management, Elsevier, vol. 59(2), pages 97-111, March.
    18. Belay, S. A. & Schmitter, Petra & Worqlul, A. W. & Steenhuis, T. S. & Reyes, M. R. & Tilahun, S. A., 2019. "Conservation agriculture saves irrigation water in the dry monsoon phase in the Ethiopian highlands," Papers published in Journals (Open Access), International Water Management Institute, pages 11(10):1-16.
    19. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Liu, Shuhui, 2011. "Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area," Agricultural Water Management, Elsevier, vol. 100(1), pages 58-69.
    20. Liao, Renkuan & Wu, Wenyong & Hu, Yaqi & Huang, Qiannan & Yan, Hua, 2019. "Quantifying moisture availability in soil profiles of cherry orchards under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6611-:d:399407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.