IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i5p723-730.html
   My bibliography  Save this article

Effects of Treflan injection on winter wheat growth and root clogging of subsurface drippers

Author

Listed:
  • Yu, Yingduo
  • Shihong, Gong
  • Xu, Di
  • Jiandong, Wang
  • Ma, Xiaopeng

Abstract

The clogging of drippers caused by crop root intrusion has been a great concern of subsurface drip irrigation (SDI) systems. To attempt to solve the problem of root clogging of drippers, a series of field experiments were conducted in the growing seasons of 2006-2008. The goal was to investigate the effects of Treflan injection on dripper clogging by roots, and on root distribution, yield, and the quality of winter wheat (Triticum aestivum L.) under SDI. For each growing season, two Treflan injection dates (March 6 and April 15 for the 2006-2007 growing season, and March 6 and April 15 for the 2007-2008 growing season) and three injection concentrations of 0, 3, and 7mg/l were arranged in a randomized block experimental design. During harvest, root length density (RLD) and Treflan concentration at different soil layers were measured using the auger-sampling method. Thirty-five drippers from each treatment were randomly chosen to observe evidence of root intrusion into the dripper flow passage in order to estimate root clogging. The experimental results showed that Treflan injection could effectively reduce root density in areas adjacent to drippers, thereby significantly decreasing the potential of root clogging. In 2007, 4 out of the 35 drippers were found with root intrusion problems in the control (without Treflan injection), while no root clogging existed any dripper in Treflan application treatments. In 2008, 6 drippers from the control but only 1 dripper from those treated with Treflan application showed root clogging. In addition, within the range of concentration used by the current experiment, Treflan concentrations had no significant effects on winter wheat root distribution, yield, and quality. Injection date, however, influenced the vertical root distribution significantly. Injection of Treflan late in the growing season influenced the root distribution only in the areas close to the drippers; the influenced areas increased if Treflan was injected early in the growing season.

Suggested Citation

  • Yu, Yingduo & Shihong, Gong & Xu, Di & Jiandong, Wang & Ma, Xiaopeng, 2010. "Effects of Treflan injection on winter wheat growth and root clogging of subsurface drippers," Agricultural Water Management, Elsevier, vol. 97(5), pages 723-730, May.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:5:p:723-730
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00021-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ayars, J. E. & Phene, C. J. & Hutmacher, R. B. & Davis, K. R. & Schoneman, R. A. & Vail, S. S. & Mead, R. M., 1999. "Subsurface drip irrigation of row crops: a review of 15 years of research at the Water Management Research Laboratory," Agricultural Water Management, Elsevier, vol. 42(1), pages 1-27, September.
    2. Hanson, B. & May, D., 2004. "Effect of subsurface drip irrigation on processing tomato yield, water table depth, soil salinity, and profitability," Agricultural Water Management, Elsevier, vol. 68(1), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan Li & Mingzhi Zhang & Zhenguang Lu & Yushun Zhang & Jingwei Wang, 2022. "Effects of Irrigation Strategy and Plastic Film Mulching on Soil N 2 O Emissions and Fruit Yields of Greenhouse Tomato," Agriculture, MDPI, vol. 12(2), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Liu, Shuhui, 2011. "Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area," Agricultural Water Management, Elsevier, vol. 100(1), pages 58-69.
    2. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    3. Himanshu, Sushil Kumar & Ale, Srinivasulu & Bordovsky, James & Darapuneni, Murali, 2019. "Evaluation of crop-growth-stage-based deficit irrigation strategies for cotton production in the Southern High Plains," Agricultural Water Management, Elsevier, vol. 225(C).
    4. Haomiao Cheng & Qilin Yu & Mohmed A. M. Abdalhi & Fan Li & Zhiming Qi & Tengyi Zhu & Wei Cai & Xiaoping Chen & Shaoyuan Feng, 2022. "RZWQM2 Simulated Drip Fertigation Management to Improve Water and Nitrogen Use Efficiency of Maize in a Solar Greenhouse," Agriculture, MDPI, vol. 12(5), pages 1-14, May.
    5. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    6. D. Kalfountzos & I. Alexiou & S. Kotsopoulos & G. Zavakos & P. Vyrlas, 2007. "Effect of Subsurface Drip Irrigation on Cotton Plantations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(8), pages 1341-1351, August.
    7. Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.
    8. Sidhu, H.S. & Jat, M.L. & Singh, Yadvinder & Sidhu, Ravneet Kaur & Gupta, Naveen & Singh, Parvinder & Singh, Pankaj & Jat, H.S. & Gerard, Bruno, 2019. "Sub-surface drip fertigation with conservation agriculture in a rice-wheat system: A breakthrough for addressing water and nitrogen use efficiency," Agricultural Water Management, Elsevier, vol. 216(C), pages 273-283.
    9. Oweis, T.Y. & Farahani, H.J. & Hachum, A.Y., 2011. "Evapotranspiration and water use of full and deficit irrigated cotton in the Mediterranean environment in northern Syria," Agricultural Water Management, Elsevier, vol. 98(8), pages 1239-1248, May.
    10. Jackson, Tamara M. & Khan, Shahbaz & Hafeez, Mohsin, 2010. "A comparative analysis of water application and energy consumption at the irrigated field level," Agricultural Water Management, Elsevier, vol. 97(10), pages 1477-1485, October.
    11. Chilin Wei & Yan Zhu & Jinzhu Zhang & Zhenhua Wang, 2021. "Evaluation of Suitable Mixture of Water and Air for Processing Tomato in Drip Irrigation in Xinjiang Oasis," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    12. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," Book Chapters,, International Water Management Institute.
    13. Mehmet Şahin, 2023. "Potential Use of Subsurface Drip Irrigation Systems in Landscape Irrigation under Full and Limited Irrigation Conditions," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    14. Zhangzhong, Lili & Yang, Peiling & Zhen, Wengang & Zhang, Xin & Wang, Caiyuan, 2019. "A kinetic model for the chemical clogging of drip irrigation system using saline water," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    15. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," IWMI Books, Reports H046807, International Water Management Institute.
    16. Pisciotta, Antonino & Di Lorenzo, Rosario & Santalucia, Gioacchino & Barbagallo, Maria Gabriella, 2018. "Response of grapevine (Cabernet Sauvignon cv) to above ground and subsurface drip irrigation under arid conditions," Agricultural Water Management, Elsevier, vol. 197(C), pages 122-131.
    17. Oweis, T. Y. & Hachum, A. Y., 2003. "Improving water productivity in the dry areas of West Asia and North Africa," IWMI Books, Reports H032642, International Water Management Institute.
    18. Aiello, Rosa & Cirelli, Giuseppe Luigi & Consoli, Simona, 2007. "Effects of reclaimed wastewater irrigation on soil and tomato fruits: A case study in Sicily (Italy)," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 65-72, October.
    19. Zotarelli, L. & Dukes, M.D. & Scholberg, J.M.S. & Muñoz-Carpena, R. & Icerman, J., 2009. "Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling," Agricultural Water Management, Elsevier, vol. 96(8), pages 1247-1258, August.
    20. Zotarelli, Lincoln & Scholberg, Johannes M. & Dukes, Michael D. & Muñoz-Carpena, Rafael & Icerman, Jason, 2009. "Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling," Agricultural Water Management, Elsevier, vol. 96(1), pages 23-34, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:5:p:723-730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.