IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i13p5464-d381316.html
   My bibliography  Save this article

Impact of COVID-19 Induced Lockdown on Environmental Quality in Four Indian Megacities Using Landsat 8 OLI and TIRS-Derived Data and Mamdani Fuzzy Logic Modelling Approach

Author

Listed:
  • Sasanka Ghosh

    (Department of Geography, Kazi Nazrul University, Asansol 713340, West Bengal, India)

  • Arijit Das

    (Department of Geography, University of Gour Banga, Malda 732103, West Bengal, India)

  • Tusar Kanti Hembram

    (Department of Geography, University of Gour Banga, Malda 732103, West Bengal, India)

  • Sunil Saha

    (Department of Geography, University of Gour Banga, Malda 732103, West Bengal, India)

  • Biswajeet Pradhan

    (Centre for Advanced Modeling and Geospatial Information Systems (GIS), Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Abdullah M. Alamri

    (Department of Geology & Geophysics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia)

Abstract

The deadly COVID-19 virus has caused a global pandemic health emergency. This COVID-19 has spread its arms to 200 countries globally and the megacities of the world were particularly affected with a large number of infections and deaths, which is still increasing day by day. On the other hand, the outbreak of COVID-19 has greatly impacted the global environment to regain its health. This study takes four megacities (Mumbai, Delhi, Kolkata, and Chennai) of India for a comprehensive assessment of the dynamicity of environmental quality resulting from the COVID-19 induced lockdown situation. An environmental quality index was formulated using remotely sensed biophysical parameters like Particulate Matters PM 10 concentration, Land Surface Temperature (LST), Normalized Different Moisture Index (NDMI), Normalized Difference Vegetation Index (NDVI), and Normalized Difference Water Index (NDWI). Fuzzy-AHP, which is a Multi-Criteria Decision-Making process, has been utilized to derive the weight of the indicators and aggregation. The results showing that COVID-19 induced lockdown in the form of restrictions on human and vehicular movements and decreasing economic activities has improved the overall quality of the environment in the selected Indian cities for a short time span. Overall, the results indicate that lockdown is not only capable of controlling COVID-19 spread, but also helpful in minimizing environmental degradation. The findings of this study can be utilized for assessing and analyzing the impacts of COVID-19 induced lockdown situation on the overall environmental quality of other megacities of the world.

Suggested Citation

  • Sasanka Ghosh & Arijit Das & Tusar Kanti Hembram & Sunil Saha & Biswajeet Pradhan & Abdullah M. Alamri, 2020. "Impact of COVID-19 Induced Lockdown on Environmental Quality in Four Indian Megacities Using Landsat 8 OLI and TIRS-Derived Data and Mamdani Fuzzy Logic Modelling Approach," Sustainability, MDPI, vol. 12(13), pages 1-24, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:13:p:5464-:d:381316
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/13/5464/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/13/5464/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nik Heynen, 2006. "Green Urban Political Ecologies: Toward a Better Understanding of Inner-City Environmental Change," Environment and Planning A, , vol. 38(3), pages 499-516, March.
    2. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    3. A. Meenatchi Sundaram, 2011. "Urban green-cover and the environmental performance of Chennai city," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(1), pages 107-119, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuji Murayama & Matamyo Simwanda & Manjula Ranagalage, 2021. "Spatiotemporal Analysis of Urbanization Using GIS and Remote Sensing in Developing Countries," Sustainability, MDPI, vol. 13(7), pages 1-5, March.
    2. Ismail Anil & Omar Alagha, 2020. "Source Apportionment of Ambient Black Carbon during the COVID-19 Lockdown," IJERPH, MDPI, vol. 17(23), pages 1-22, December.
    3. David Hidalgo García & Julián Arco Díaz & Adelaida Martín Martín & Emilio Gómez Cobos, 2022. "Spatiotemporal Analysis of Urban Thermal Effects Caused by Heat Waves through Remote Sensing," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    4. Mutahhar A. Dar & Bartlomiej Gladysz & Aleksander Buczacki, 2021. "Impact of COVID19 on Operational Activities of Manufacturing Organizations—A Case Study and Industry 4.0-Based Survive-Stabilise-Sustainability (3S) Framework," Energies, MDPI, vol. 14(7), pages 1-28, March.
    5. Tomasz Wołowiec & Iuliia Myroshnychenko & Ihor Vakulenko & Sylwester Bogacki & Anna Maria Wiśniewska & Svitlana Kolosok & Vitaliy Yunger, 2022. "International Impact of COVID-19 on Energy Economics and Environmental Pollution: A Scoping Review," Energies, MDPI, vol. 15(22), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    2. Fatih Yiğit & Şakir Esnaf, 2021. "A new Fuzzy C-Means and AHP-based three-phased approach for multiple criteria ABC inventory classification," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1517-1528, August.
    3. Rachele Corticelli & Margherita Pazzini & Cecilia Mazzoli & Claudio Lantieri & Annarita Ferrante & Valeria Vignali, 2022. "Urban Regeneration and Soft Mobility: The Case Study of the Rimini Canal Port in Italy," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    4. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    5. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    6. Seung-Jin Han & Won-Jae Lee & So-Hee Kim & Sang-Hoon Yoon & Hyunwoong Pyun, 2022. "Assessing Expected Long-term Benefits for the Olympic Games: Delphi-AHP Approach from Korean Olympic Experts," SAGE Open, , vol. 12(4), pages 21582440221, December.
    7. Denys Yemshanov & Frank H. Koch & Yakov Ben‐Haim & Marla Downing & Frank Sapio & Marty Siltanen, 2013. "A New Multicriteria Risk Mapping Approach Based on a Multiattribute Frontier Concept," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1694-1709, September.
    8. Mangla, Sachin Kumar & Srivastava, Praveen Ranjan & Eachempati, Prajwal & Tiwari, Aviral Kumar, 2024. "Exploring the impact of key performance factors on energy markets: From energy risk management perspectives," Energy Economics, Elsevier, vol. 131(C).
    9. Seyed Rakhshan & Ali Kamyad & Sohrab Effati, 2015. "Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 505-525, March.
    10. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    11. Mónica García-Melón & Blanca Pérez-Gladish & Tomás Gómez-Navarro & Paz Mendez-Rodriguez, 2016. "Assessing mutual funds’ corporate social responsibility: a multistakeholder-AHP based methodology," Annals of Operations Research, Springer, vol. 244(2), pages 475-503, September.
    12. Jitendar Kumar Khatri & Bhimaraya Metri, 2016. "SWOT-AHP Approach for Sustainable Manufacturing Strategy Selection: A Case of Indian SME," Global Business Review, International Management Institute, vol. 17(5), pages 1211-1226, October.
    13. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Cui, Ye & E, Hanyu & Pedrycz, Witold & Fayek, Aminah Robinson, 2022. "A granular multicriteria group decision making for renewable energy planning problems," Renewable Energy, Elsevier, vol. 199(C), pages 1047-1059.
    15. Jha, Madan K. & Chowdary, V.M. & Kulkarni, Y. & Mal, B.C., 2014. "Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 96-111.
    16. Om Prakash Mishra & Mahesh Chand & Krishan Kumar & Prashant Mishra, 2023. "Investigating applicability of green supply chain management in manufacturing sectors," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1183-1196, August.
    17. David Han-Min Wang & Quang Linh Huynh, 2013. "Mediating Role of Knowledge Management in Effect of Management Accounting Practices on Firm Performance," Journal of Knowledge Management, Economics and Information Technology, ScientificPapers.org, vol. 3(3), pages 1-10, June.
    18. Luis Pérez-Domínguez & Luis Alberto Rodríguez-Picón & Alejandro Alvarado-Iniesta & David Luviano Cruz & Zeshui Xu, 2018. "MOORA under Pythagorean Fuzzy Set for Multiple Criteria Decision Making," Complexity, Hindawi, vol. 2018, pages 1-10, April.
    19. Neha Arora & Naresh Kumar, 2021. "Does Financial Inclusion Promote Human Development? Evidence from India," Jindal Journal of Business Research, , vol. 10(2), pages 163-184, December.
    20. Hossain, Mohammad Khalid & Meng, Qingmin, 2020. "A fine-scale spatial analytics of the assessment and mapping of buildings and population at different risk levels of urban flood," Land Use Policy, Elsevier, vol. 99(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:13:p:5464-:d:381316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.