IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i22p4345-d284543.html
   My bibliography  Save this article

A Cross-Reconstruction Method for Step-Changed Runoff Series to Implement Frequency Analysis under Changing Environment

Author

Listed:
  • Jiantao Yang

    (School of Environmental Science and Engineering, Chang’an University, Xi’an 710054, China)

  • Hongbo Zhang

    (School of Environmental Science and Engineering, Chang’an University, Xi’an 710054, China
    Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang’an University, Xi’an 710054, China)

  • Chongfeng Ren

    (School of Environmental Science and Engineering, Chang’an University, Xi’an 710054, China
    Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang’an University, Xi’an 710054, China)

  • Zhengnian Nan

    (School of Environmental Science and Engineering, Chang’an University, Xi’an 710054, China)

  • Xiaowei Wei

    (School of Environmental Science and Engineering, Chang’an University, Xi’an 710054, China)

  • Ci Li

    (School of Environmental Science and Engineering, Chang’an University, Xi’an 710054, China)

Abstract

The stationarity of observed hydrological series has been broken or destroyed in many areas worldwide due to changing environments, causing hydrologic designs under stationarity assumption to be questioned and placing designed projects under threat. This paper proposed a data expansion approach—namely, the cross-reconstruction (CR) method—for frequency analysis for a step-changed runoff series combined with the empirical mode decomposition (EMD) method. The purpose is to expand the small data on each step to meet the requirements of data capacity for frequency analysis and to provide more reliable statistics within a stepped runoff series. Taking runoff records at three gauges in western China as examples, the results showed that the cross-reconstruction method has the advantage of data expansion of the small sample runoff data, and the expanded runoff data at steps can meet the data capacity requirements for frequency analysis. In addition, the comparison of the expanded and measured data at steps indicated that the expanded data can demonstrate the statistics closer to the potential data population, rather than just reflecting the measured data. Therefore, it is considered that the CR method ought to be available in frequency analysis for step-changed records, can be used as a tool to construct the hydrological probability distribution under different levels of changing environments (at different steps) through data expansion, and can further assist policy-making in water resources management in the future.

Suggested Citation

  • Jiantao Yang & Hongbo Zhang & Chongfeng Ren & Zhengnian Nan & Xiaowei Wei & Ci Li, 2019. "A Cross-Reconstruction Method for Step-Changed Runoff Series to Implement Frequency Analysis under Changing Environment," IJERPH, MDPI, vol. 16(22), pages 1-20, November.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:22:p:4345-:d:284543
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/22/4345/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/22/4345/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. N. Pettitt, 1979. "A Non‐Parametric Approach to the Change‐Point Problem," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(2), pages 126-135, June.
    2. P. C. D. Milly & K. A. Dunne & A. V. Vecchia, 2005. "Global pattern of trends in streamflow and water availability in a changing climate," Nature, Nature, vol. 438(7066), pages 347-350, November.
    3. Shengzhi Huang & Jianxia Chang & Qiang Huang & Yutong Chen, 2014. "Spatio-temporal Changes and Frequency Analysis of Drought in the Wei River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3095-3110, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsin-Yu Chen & Chia-Chi Huang & Hsin-Fu Yeh, 2021. "Quantifying the Relative Contribution of the Climate Change and Human Activity on Runoff in the Choshui River Alluvial Fan, Taiwan," Land, MDPI, vol. 10(8), pages 1-14, August.
    2. Moldir Rakhimova & Tie Liu & Sanim Bissenbayeva & Yerbolat Mukanov & Khusen Sh. Gafforov & Zhuldyzay Bekpergenova & Aminjon Gulakhmadov, 2020. "Assessment of the Impacts of Climate Change and Human Activities on Runoff Using Climate Elasticity Method and General Circulation Model (GCM) in the Buqtyrma River Basin, Kazakhstan," Sustainability, MDPI, vol. 12(12), pages 1-22, June.
    3. Dayang Wang & Dagang Wang & Chongxun Mo & Yi Du, 2021. "Risk variation of reservoir regulation during flood season based on bivariate statistical approach under climate change: a case study in the Chengbihe reservoir, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1585-1608, September.
    4. Lihua Xiong & Tao Du & Chong-Yu Xu & Shenglian Guo & Cong Jiang & Christopher Gippel, 2015. "Non-Stationary Annual Maximum Flood Frequency Analysis Using the Norming Constants Method to Consider Non-Stationarity in the Annual Daily Flow Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3615-3633, August.
    5. Nekruz Gulahmadov & Yaning Chen & Aminjon Gulakhmadov & Moldir Rakhimova & Manuchekhr Gulakhmadov, 2021. "Quantifying the Relative Contribution of Climate Change and Anthropogenic Activities on Runoff Variations in the Central Part of Tajikistan in Central Asia," Land, MDPI, vol. 10(5), pages 1-29, May.
    6. Sanim Bissenbayeva & Jilili Abuduwaili & Dana Shokparova & Asel Saparova, 2019. "Variation in Runoff of the Arys River and Keles River Watersheds (Kazakhstan), as Influenced by Climate Variation and Human Activity," Sustainability, MDPI, vol. 11(17), pages 1-14, September.
    7. Vazifehkhah, Saeed & Kahya, Ercan, 2019. "Hydrological and agricultural droughts assessment in a semi-arid basin: Inspecting the teleconnections of climate indices on a catchment scale," Agricultural Water Management, Elsevier, vol. 217(C), pages 413-425.
    8. John Quiggin, 2010. "Agriculture and global climate stabilization: a public good analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 121-132, November.
    9. Stephen J. Déry & Marco A. Hernández-Henríquez & Tricia A. Stadnyk & Tara J. Troy, 2021. "Vanishing weekly hydropeaking cycles in American and Canadian rivers," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    10. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    11. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    12. Kazi Ali Tamaddun & Ajay Kalra & Sajjad Ahmad, 2019. "Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1947-1968, April.
    13. Jie Yang & Yimin Wang & Jun Yao & Jianxia Chang & Guoxin Xu & Xin Wang & Hui Hu, 2020. "Coincidence probability analysis of hydrologic low-flow under the changing environment in the Wei River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1711-1726, September.
    14. Alina Bărbulescu & Cristian Ștefan Dumitriu, 2021. "On the Connection between the GEP Performances and the Time Series Properties," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    15. Alfredas Račkauskas & Martin Wendler, 2020. "Convergence of U-processes in Hölder spaces with application to robust detection of a changed segment," Statistical Papers, Springer, vol. 61(4), pages 1409-1435, August.
    16. Huang, Shengzhi & Huang, Qiang & Chang, Jianxia & Leng, Guoyong & Xing, Li, 2015. "The response of agricultural drought to meteorological drought and the influencing factors: A case study in the Wei River Basin, China," Agricultural Water Management, Elsevier, vol. 159(C), pages 45-54.
    17. Hsin-Yu Chen & Yu-Hsiang Hsu & Chia-Chi Huang & Hsin-Fu Yeh, 2023. "Baseflow Variation in Southern Taiwan Basin," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    18. Catherine Araujo Bonjean & Alioune N’diaye & Olivier Santoni, 2019. "Who benefits from the return of the rains? The case of the Ferlo breeders in Senegal [A qui profite le retour des pluies ? Le cas des éleveurs du Ferlo]," CERDI Working papers halshs-02419601, HAL.
    19. I. García-Garizábal & J. Causapé & R. Abrahao & D. Merchan, 2014. "Impact of Climate Change on Mediterranean Irrigation Demand: Historical Dynamics of Climate and Future Projections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1449-1462, March.
    20. Quiggin, John & Adamson, David & Chambers, Sarah & Schrobback, Peggy, 2009. "Climate change, mitigation and adaptation: the case of the Murray-Darling Basin in Australia," Risk and Sustainable Management Group Working Papers 149878, University of Queensland, School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:22:p:4345-:d:284543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.