IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4588-d367194.html
   My bibliography  Save this article

Exploring a Sustainable Cropping System in the North China Plain Using a Modelling Approach

Author

Listed:
  • Huanyuan Wang

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China
    Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Natural Resources Ministry, Xi’an 710075, China)

  • Baoguo Li

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Liang Jin

    (Soil Fertilizer and Environment Resources Institute, Heilongjiang Academy of Agriculture Sciences, Harbin 150086, China)

  • Kelin Hu

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

Abstract

The North China Plain (NCP) is one of the most important grain production regions in China. However, it currently experiences water shortage, severe nonpoint source pollution, and low water and N use efficiencies (WUE and NUE). To explore sustainable agricultural development in this region, a field experiment with different cropping systems was conducted in suburban Beijing. These cropping systems included a winter wheat and summer maize rotation system for one year (WM), three harvests (winter wheat-summer maize-spring maize) in two years (HT), and continuous spring maize monoculture (CS). Novel ways were explored to improve WUE and NUE and to reduce N loss via the alternative cropping system based on the simulation results of a soil-crop system model. Results showed that the annual average yields were ranked as follows: WM > HT > CS. The N leaching of WM was much larger than that of HT and CS. WUE and NUE were ranked as follows: WM < HT < CS. Comprehensive evaluation indices based on agronomic and environmental effects indicated that CS or HT have significant potential for approaches characterized by water-saving, fertilizer-saving, high-WUE, and high-NUE properties. Once spring maize yield reached an ideal level HT and CS became a high-yield, water-saving, and fertilizer-saving cropping systems. Therefore, this method would be beneficial to sustainable agricultural development in the NCP.

Suggested Citation

  • Huanyuan Wang & Baoguo Li & Liang Jin & Kelin Hu, 2020. "Exploring a Sustainable Cropping System in the North China Plain Using a Modelling Approach," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4588-:d:367194
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, J.M. & Yang, J.Y. & Liu, S. & Hoogenboom, G., 2014. "An evaluation of the statistical methods for testing the performance of crop models with observed data," Agricultural Systems, Elsevier, vol. 127(C), pages 81-89.
    2. Li, Zhoujing & Hu, Kelin & Li, Baoguo & He, Mingrong & Zhang, Jiwang, 2015. "Evaluation of water and nitrogen use efficiencies in a double cropping system under different integrated management practices based on a model approach," Agricultural Water Management, Elsevier, vol. 159(C), pages 19-34.
    3. Kukal, M.S. & Irmak, S., 2020. "Characterization of water use and productivity dynamics across four C3 and C4 row crops under optimal growth conditions," Agricultural Water Management, Elsevier, vol. 227(C).
    4. Li, Xiaoxin & Hu, Chunsheng & Delgado, Jorge A. & Zhang, Yuming & Ouyang, Zhiyun, 2007. "Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north china plain," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 137-147, April.
    5. Zhang, Yongqiang & Kendy, Eloise & Qiang, Yu & Changming, Liu & Yanjun, Shen & Hongyong, Sun, 2004. "Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain," Agricultural Water Management, Elsevier, vol. 64(2), pages 107-122, January.
    6. Sun, Qinping & Kröbel, Roland & Müller, Torsten & Römheld, Volker & Cui, Zhenling & Zhang, Fusuo & Chen, Xinping, 2011. "Optimization of yield and water-use of different cropping systems for sustainable groundwater use in North China Plain," Agricultural Water Management, Elsevier, vol. 98(5), pages 808-814, March.
    7. Hu, Kelin & Li, Baoguo & Chen, Deli & Zhang, Yuanpei & Edis, Robert, 2008. "Simulation of nitrate leaching under irrigated maize on sandy soil in desert oasis in Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 95(10), pages 1180-1188, October.
    8. Luo, Jianmei & Shen, Yanjun & Qi, Yongqing & Zhang, Yucui & Xiao, Dengpan, 2018. "Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China," Agricultural Systems, Elsevier, vol. 159(C), pages 32-41.
    9. Liang, Hao & Qin, Wei & Hu, Kelin & Tao, Hongbing & Li, Baoguo, 2019. "Modelling groundwater level dynamics under different cropping systems and developing groundwater neutral systems in the North China Plain," Agricultural Water Management, Elsevier, vol. 213(C), pages 732-741.
    10. Li, Yong & White, Robert & Chen, Deli & Zhang, Jiabao & Li, Baoguo & Zhang, Yuming & Huang, Yuanfang & Edis, Robert, 2007. "A spatially referenced water and nitrogen management model (WNMM) for (irrigated) intensive cropping systems in the North China Plain," Ecological Modelling, Elsevier, vol. 203(3), pages 395-423.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Pinpin & Huang, Feng & Li, Baoguo, 2022. "Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction," Agricultural Water Management, Elsevier, vol. 263(C).
    2. Hu, Kelin & Li, Baoguo & Chen, Deli & Zhang, Yuanpei & Edis, Robert, 2008. "Simulation of nitrate leaching under irrigated maize on sandy soil in desert oasis in Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 95(10), pages 1180-1188, October.
    3. Liang, Hao & Hu, Kelin & Batchelor, William D. & Qin, Wei & Li, Baoguo, 2018. "Developing a water and nitrogen management model for greenhouse vegetable production in China: Sensitivity analysis and evaluation," Ecological Modelling, Elsevier, vol. 367(C), pages 24-33.
    4. Li, Zhoujing & Hu, Kelin & Li, Baoguo & He, Mingrong & Zhang, Jiwang, 2015. "Evaluation of water and nitrogen use efficiencies in a double cropping system under different integrated management practices based on a model approach," Agricultural Water Management, Elsevier, vol. 159(C), pages 19-34.
    5. He, Yong & Liang, Hao & Hu, Kelin & Wang, Hongyuan & Hou, Lingling, 2018. "Modeling nitrogen leaching in a spring maize system under changing climate and genotype scenarios in arid Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 210(C), pages 316-323.
    6. Zhao, Jie & Zhang, Xuepeng & Yang, Yadong & Zang, Huadong & Yan, Peng & Meki, Manyowa N. & Doro, Luca & Sui, Peng & Jeong, Jaehak & Zeng, Zhaohai, 2021. "Alternative cropping systems for groundwater irrigation sustainability in the North China Plain," Agricultural Water Management, Elsevier, vol. 250(C).
    7. Shi, Xinrui & Batchelor, William D. & Liang, Hao & Li, Sien & Li, Baoguo & Hu, Kelin, 2020. "Determining optimal water and nitrogen management under different initial soil mineral nitrogen levels in northwest China based on a model approach," Agricultural Water Management, Elsevier, vol. 234(C).
    8. Rathore, Vijay Singh & Nathawat, Narayan Singh & Bhardwaj, Seema & Yadav, Bhagirath Mal & Santra, Priyabrata & Kumar, Mahesh & Shekhawat, Ravindra Singh & Reager, Madan Lal & Yadav, Shish Ram & Lal, B, 2022. "Alternative cropping systems and optimized management practices for saving groundwater and enhancing economic and environmental sustainability," Agricultural Water Management, Elsevier, vol. 272(C).
    9. Wei, Yongping & White, Robert & Hu, Kelin & Willett, Ian, 2010. "Valuing the environmental externalities of oasis farming in Left Banner, Alxa, China," Ecological Economics, Elsevier, vol. 69(11), pages 2151-2157, September.
    10. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    11. Liang, Hao & Qi, Zhiming & Hu, Kelin & Li, Baoguo & Prasher, Shiv O., 2018. "Modelling subsurface drainage and nitrogen losses from artificially drained cropland using coupled DRAINMOD and WHCNS models," Agricultural Water Management, Elsevier, vol. 195(C), pages 201-210.
    12. Li, Zhuoting & Yang, J.Y. & Drury, C.F. & Yang, X.M. & Reynolds, W.D. & Li, Xiaogang & Hu, Chunsheng, 2017. "Evaluation of the DNDC model for simulating soil temperature, moisture and respiration from monoculture and rotational corn, soybean and winter wheat in Canada," Ecological Modelling, Elsevier, vol. 360(C), pages 230-243.
    13. Luo, Jianmei & Zhang, Hongmei & Qi, Yongqing & Pei, Hongwei & Shen, Yanjun, 2022. "Balancing water and food by optimizing the planting structure in the Beijing–Tianjin–Hebei region, China," Agricultural Water Management, Elsevier, vol. 262(C).
    14. Zhang, Hongyuan & Hu, Kelin & Zhang, Lijuan & Ji, Yanzhi & Qin, Wei, 2019. "Exploring optimal catch crops for reducing nitrate leaching in vegetable greenhouse in North China," Agricultural Water Management, Elsevier, vol. 212(C), pages 273-282.
    15. Wang, Huanyuan & Ju, Xiaotang & Wei, Yongping & Li, Baoguo & Zhao, Lulu & Hu, Kelin, 2010. "Simulation of bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain," Agricultural Water Management, Elsevier, vol. 97(10), pages 1646-1654, October.
    16. Sun, Hongyong & Zhang, Xiying & Liu, Xiujing & Liu, Xiuwei & Shao, Liwei & Chen, Suying & Wang, Jintao & Dong, Xinliang, 2019. "Impact of different cropping systems and irrigation schedules on evapotranspiration, grain yield and groundwater level in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 202-209.
    17. Shi, Xinrui & Hu, Kelin & Batchelor, William D. & Liang, Hao & Wu, Yali & Wang, Qihui & Fu, Jin & Cui, Xiaoqing & Zhou, Feng, 2020. "Exploring optimal nitrogen management strategies to mitigate nitrogen losses from paddy soil in the middle reaches of the Yangtze River," Agricultural Water Management, Elsevier, vol. 228(C).
    18. Chen, Shichao & Parsons, David & Du, Taisheng & Kumar, Uttam & Wang, Sufen, 2021. "Simulation of yield and water balance using WHCNS and APSIM combined with geostatistics across a heterogeneous field," Agricultural Water Management, Elsevier, vol. 258(C).
    19. Zhong, Honglin & Sun, Laixiang & Fischer, Günther & Tian, Zhan & Liang, Zhuoran, 2019. "Optimizing regional cropping systems with a dynamic adaptation strategy for water sustainable agriculture in the Hebei Plain," Agricultural Systems, Elsevier, vol. 173(C), pages 94-106.
    20. Liang, Hao & Qin, Wei & Hu, Kelin & Tao, Hongbing & Li, Baoguo, 2019. "Modelling groundwater level dynamics under different cropping systems and developing groundwater neutral systems in the North China Plain," Agricultural Water Management, Elsevier, vol. 213(C), pages 732-741.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4588-:d:367194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.