IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p4109-d359489.html
   My bibliography  Save this article

Necessity of a Multifaceted Approach in Analyzing Growth of Impervious Surfaces

Author

Listed:
  • Ghali Abdullahi Abubakar

    (Institute of Agricultural Remote Sensing and Information Technology, College of Environment and Natural Resource, Zhejiang University, Hangzhou 310058, China)

  • Jiexia Wu

    (Atmospheric Department, Beijing Piesat Information Technology Co., Ltd., Beijing 100195, China)

  • Amir Reza Shahtahmassebi

    (Institute of Agricultural Remote Sensing and Information Technology, College of Environment and Natural Resource, Zhejiang University, Hangzhou 310058, China)

  • Ke Wang

    (Institute of Agricultural Remote Sensing and Information Technology, College of Environment and Natural Resource, Zhejiang University, Hangzhou 310058, China)

Abstract

While substantial efforts have been devoted to the remote sensing of impervious surfaces, few studies have developed frameworks to connect impervious surfaces’ growth with spatial planning decisions. To this end, this paper develops a multifaceted approach with three components: Visualization, numerical analysis, and simulation at the sub-pixel level. First, the growth of impervious surfaces was visualized through write function memory (WFM) insertion for the period of 1974–2009 of Cixi County in Zhejiang Province, China. Second, anomaly detection, statistical analysis, and landscape metrics were used to quantify changes in impervious surfaces over time. Finally, a slope, land use, exclusion, urban extent, transportation, and hill shade (SLEUTH) cellular automata model was employed to simulate the impervious surface growth until 2015 under four specific spatial decision scenarios: Current trends, environmental protection growth, business growth, and Chinese policy for protecting rural regions. The results show that Cixi County experienced compact growth due to expansion and internal intensification. Interestingly, the SLEUTH reveals that the projected space of impervious surfaces’ growth was consistent with reality in 2015. The framework established in this study holds considerable potential for improving our understanding of the interaction between impervious surfaces’ growth and planning aspects.

Suggested Citation

  • Ghali Abdullahi Abubakar & Jiexia Wu & Amir Reza Shahtahmassebi & Ke Wang, 2020. "Necessity of a Multifaceted Approach in Analyzing Growth of Impervious Surfaces," Sustainability, MDPI, vol. 12(10), pages 1-22, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4109-:d:359489
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/4109/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/4109/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shahtahmassebi, Amir Reza & Wu, Chun & Blackburn, George Alan & Zheng, Qing & Huang, Lingyan & Shortridge, Ashton & Shahtahmassebi, Golnaz & Jiang, Ruowei & He, Shan & Wang, Ke & Lin, Yue & Clarke, Ke, 2018. "How do modern transportation projects impact on development of impervious surfaces via new urban area and urban intensification? Evidence from Hangzhou Bay Bridge, China," Land Use Policy, Elsevier, vol. 77(C), pages 479-497.
    2. Qing Zheng & Shan He & Lingyan Huang & Xinyu Zheng & Yi Pan & Amir Reza Shahtahmassebi & Zhangquan Shen & Zhoulu Yu & Ke Wang, 2016. "Assessing the Impacts of Chinese Sustainable Ground Transportation on the Dynamics of Urban Growth: A Case Study of the Hangzhou Bay Bridge," Sustainability, MDPI, vol. 8(7), pages 1-20, July.
    3. Lizhong Hua & Lina Tang & Shenghui Cui & Kai Yin, 2014. "Simulating Urban Growth Using the SLEUTH Model in a Coastal Peri-Urban District in China," Sustainability, MDPI, vol. 6(6), pages 1-16, June.
    4. Lizhong Hua & Xinxin Zhang & Qin Nie & Fengqin Sun & Lina Tang, 2020. "The Impacts of the Expansion of Urban Impervious Surfaces on Urban Heat Islands in a Coastal City in China," Sustainability, MDPI, vol. 12(2), pages 1-21, January.
    5. Han, Yu & Jia, Haifeng, 2017. "Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of Foshan, China," Ecological Modelling, Elsevier, vol. 353(C), pages 107-116.
    6. Jou-Man Huang & Heui-Yung Chang & Yu-Su Wang, 2020. "Spatiotemporal Changes in the Built Environment Characteristics and Urban Heat Island Effect in a Medium-Sized City, Chiayi City, Taiwan," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdullah F. Alqurashi, 2021. "Quantification of Urban Patterns and Processes through Space and Time Using Remote Sensing Data: A Comparative Study between Three Saudi Arabian Cities," Sustainability, MDPI, vol. 13(22), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Hidalgo García, 2023. "Evaluation and Analysis of the Effectiveness of the Main Mitigation Measures against Surface Urban Heat Islands in Different Local Climate Zones through Remote Sensing," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    2. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    3. Hsing-Fu Kuo & Ko-Wan Tsou, 2017. "Modeling and Simulation of the Future Impacts of Urban Land Use Change on the Natural Environment by SLEUTH and Cluster Analysis," Sustainability, MDPI, vol. 10(1), pages 1-21, December.
    4. Andrew Allan & Ali Soltani & Mohammad Hamed Abdi & Melika Zarei, 2022. "Driving Forces behind Land Use and Land Cover Change: A Systematic and Bibliometric Review," Land, MDPI, vol. 11(8), pages 1-20, August.
    5. Chenxi Li & Xing Gao & Bao-Jie He & Jingyao Wu & Kening Wu, 2019. "Coupling Coordination Relationships between Urban-industrial Land Use Efficiency and Accessibility of Highway Networks: Evidence from Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    6. Xinqi Hu & Hongqi Wang & Yi Zhu & Gang Xie & Huijian Shi, 2019. "Landscape Characteristics Affecting Spatial Patterns of Water Quality Variation in a Highly Disturbed Region," IJERPH, MDPI, vol. 16(12), pages 1-19, June.
    7. Lingyan Huang & Yani Wu & Qing Zheng & Qiming Zheng & Xinyu Zheng & Muye Gan & Ke Wang & AmirReza Shahtahmassebi & Jingsong Deng & Jihua Wang & Jing Zhang, 2018. "Quantifying the Spatiotemporal Dynamics of Industrial Land Uses through Mining Free Access Social Datasets in the Mega Hangzhou Bay Region, China," Sustainability, MDPI, vol. 10(10), pages 1-24, September.
    8. Xiaobin Yang & Zhilong Chen & Hao Cai & Linjian Ma, 2014. "A Framework for Assessment of the Influence of China’s Urban Underground Space Developments on the Urban Microclimate," Sustainability, MDPI, vol. 6(12), pages 1-31, November.
    9. Taher Safarrad & Mostafa Ghadami & Andreas Dittmann & Mousa Pazhuhan (Panahandeh Khah), 2021. "Tourism Effect on the Spatiotemporal Pattern of Land Surface Temperature (LST): Babolsar and Fereydonkenar Cities (Cases Study in Iran)," Land, MDPI, vol. 10(9), pages 1-25, September.
    10. Maryam Kiani Sadr & Roghayeh Parchianloo & Sedighe Abdollahi & Hamta Golkarian, 2023. "Application of weighted aggregated sum product assessment and geographical information system for urban development zoning," Asia-Pacific Journal of Regional Science, Springer, vol. 7(3), pages 845-863, September.
    11. Yi Zhang & Dapeng Zhang & Haoyu Jiang, 2023. "A Review of Artificial Intelligence-Based Optimization Applications in Traditional Active Maritime Collision Avoidance," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    12. Lizhong Hua & Haibo Wang & Huafeng Zhang & Fengqin Sun & Lanhui Li & Lina Tang, 2023. "A New Technique for Impervious Surface Mapping and Its Spatio-Temporal Changes from Landsat and Sentinel-2 Images," Sustainability, MDPI, vol. 15(10), pages 1-27, May.
    13. Jou-Man Huang & Liang-Chun Chen, 2020. "A Numerical Study on Mitigation Strategies of Urban Heat Islands in a Tropical Megacity: A Case Study in Kaohsiung City, Taiwan," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    14. Zipeng Zhang & Ning Zhang, 2021. "A Novel Development Scheme of Mobility as a Service: Can It Provide a Sustainable Environment for China?," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    15. Taher Safarrad & Mostafa Ghadami & Andreas Dittmann, 2022. "Effects of COVID-19 Restriction Policies on Urban Heat Islands in Some European Cities: Berlin, London, Paris, Madrid, and Frankfurt," IJERPH, MDPI, vol. 19(11), pages 1-25, May.
    16. Erqi Xu & Yimeng Chen, 2019. "Modeling Intersecting Processes of Wetland Shrinkage and Urban Expansion by a Time-Varying Methodology," Sustainability, MDPI, vol. 11(18), pages 1-24, September.
    17. Abdullah Addas, 2023. "Machine Learning Techniques to Map the Impact of Urban Heat Island: Investigating the City of Jeddah," Land, MDPI, vol. 12(6), pages 1-14, May.
    18. Yishao Shi & Jie Wu & Shouzheng Shi, 2017. "Study of the Simulated Expansion Boundary of Construction Land in Shanghai Based on a SLEUTH Model," Sustainability, MDPI, vol. 9(6), pages 1-15, May.
    19. Hashem Dadashpoor & Mahboobeh Nateghi, 2017. "Simulating spatial pattern of urban growth using GIS-based SLEUTH model: a case study of eastern corridor of Tehran metropolitan region, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(2), pages 527-547, April.
    20. Jin Zhang & Shuiping Zhang & Xin Huang & Zhiwei Zhang & Chengtuo Jin, 2023. "Spatiotemporal Evolution of Coordinated Development between Economic Resilience and Green Finance under the Background of Sustainable Development," Sustainability, MDPI, vol. 15(11), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4109-:d:359489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.