IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2019i1p175-d301618.html
   My bibliography  Save this article

Study on the Effect of Environmental Regulation on the Green Total Factor Productivity of Logistics Industry from the Perspective of Low Carbon

Author

Listed:
  • Zijing Liang

    (School of Management, Xuzhou University of Technology, Xuzhou 221018, China
    School of Management, China University of Mining & Technology, Xuzhou 221006, China)

  • Yung-ho Chiu

    (Department of Economics, Soochow University, 56, Kueiyang St., Sec. 1, Taipei 10048, Taiwan)

  • Xinchun Li

    (School of Management, China University of Mining & Technology, Xuzhou 221006, China)

  • Quan Guo

    (School of Management, China University of Mining & Technology, Xuzhou 221006, China
    School of Business, Global Institute of Software Technology, Suzhou 215000, China)

  • Yue Yun

    (School of Management, China University of Mining & Technology, Xuzhou 221006, China)

Abstract

Under the low-carbon background, with the aid of the Malmquist–Luenberger SBM (Slack-based Measure) model of unexpected output, the green total factor productivity (GTFP) of the logistics industry in Jiangsu Province, China, was measured and decomposed in this study based on the reality and experience of logistics industry development in 13 cities in three regions of Jiangsu Province in the years 2006–2018 by taking resource consumption into the input system and discharged pollutants into the output system. It is concluded that the environmental regulation (ER) has a significant positive effect on the growth of the GTFP of the logistics industry, and technological progress has become an important endogenous force that promotes the GTFP of the logistics industry in Jiangsu Province. On this basis, a dynamic GMM (Generalized method of moment) model and a Tobit model were constructed to further study the possible temporal and spatial effects of ER on the GTFP of the logistics industry. The research results reveal that the ER can exert both promoting and inhibitory effects on the GTFP of the logistics industry, and there is a temporal turning point for the effects. Besides, the effects notably differ spatially and temporally. Finally, some policies and advice for the green sustainable development of the logistics industry were proposed. For example, the government and enterprises should pay attention to the green and efficient development of the logistics industry and dynamically adjust the ER methods. They should consider the greening of both forward logistics links and reverse logistics system in the supply chain.

Suggested Citation

  • Zijing Liang & Yung-ho Chiu & Xinchun Li & Quan Guo & Yue Yun, 2019. "Study on the Effect of Environmental Regulation on the Green Total Factor Productivity of Logistics Industry from the Perspective of Low Carbon," Sustainability, MDPI, vol. 12(1), pages 1-19, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:175-:d:301618
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/175/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/175/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Pagan, Adrian R & Wickens, M R, 1989. "A Survey of Some Recent Econometric Methods," Economic Journal, Royal Economic Society, vol. 99(398), pages 962-1025, December.
    3. Gray, Wayne B. & Shadbegian, Ronald J., 2003. "Plant vintage, technology, and environmental regulation," Journal of Environmental Economics and Management, Elsevier, vol. 46(3), pages 384-402, November.
    4. Eli Berman & Linda T. M. Bui, 2001. "Environmental Regulation And Productivity: Evidence From Oil Refineries," The Review of Economics and Statistics, MIT Press, vol. 83(3), pages 498-510, August.
    5. Arnold C. Harberger, 1962. "The Incidence of the Corporation Income Tax," Journal of Political Economy, University of Chicago Press, vol. 70(3), pages 215-215.
    6. Dale W. Jorgenson & Peter J. Wilcoxen, 1990. "Environmental Regulation and U.S. Economic Growth," RAND Journal of Economics, The RAND Corporation, vol. 21(2), pages 314-340, Summer.
    7. Kiuila, Olga & Peszko, Grzegorz, 2006. "Sectoral and macroeconomic impacts of the large combustion plants in Poland: A general equilibrium analysis," Energy Economics, Elsevier, vol. 28(3), pages 288-307, May.
    8. Ang, James B., 2009. "CO2 emissions, research and technology transfer in China," Ecological Economics, Elsevier, vol. 68(10), pages 2658-2665, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahid, Rabia & Shahid, Humera & Shijie, Li & Jian, Gao, 2024. "Developing nexus between economic opening-up, environmental regulations, rent of natural resources, green innovation, and environmental upgrading of China - empirical analysis using ARDL bound-testing," Innovation and Green Development, Elsevier, vol. 3(1).
    2. Ying Chen & Suran Li & Long Cheng, 2020. "Evaluation of Cultivated Land Use Efficiency with Environmental Constraints in the Dongting Lake Eco-Economic Zone of Hunan Province, China," Land, MDPI, vol. 9(11), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anabel Zárate-Marco & Jaime Vallés-Giménez, 2015. "Environmental tax and productivity in a decentralized context: new findings on the Porter hypothesis," European Journal of Law and Economics, Springer, vol. 40(2), pages 313-339, October.
    2. Becker, Randy A. & Pasurka, Carl & Shadbegian, Ronald J., 2013. "Do environmental regulations disproportionately affect small businesses? Evidence from the Pollution Abatement Costs and Expenditures survey," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 523-538.
    3. Yang, Chih-Hai & Tseng, Yu-Hsuan & Chen, Chiang-Ping, 2012. "Environmental regulations, induced R&D, and productivity: Evidence from Taiwan's manufacturing industries," Resource and Energy Economics, Elsevier, vol. 34(4), pages 514-532.
    4. Michael Gallaher & Cynthia Morgan & Ronald J. Shadbegian, 2008. "Redesign of the 2005 Pollution Abatement Costs and Expenditure Survey," NCEE Working Paper Series 200801, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Jan 2008.
    5. Dietrich Earnhart & Dylan G. Rassier, 2016. "“Effective regulatory stringency” and firms’ profitability: the effects of effluent limits and government monitoring," Journal of Regulatory Economics, Springer, vol. 50(2), pages 111-145, October.
    6. Rassier, Dylan G. & Earnhart, Dietrich, 2015. "Effects of environmental regulation on actual and expected profitability," Ecological Economics, Elsevier, vol. 112(C), pages 129-140.
    7. Wang, Yan & Shen, Neng, 2016. "Environmental regulation and environmental productivity: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 758-766.
    8. Zhang, Yijun & Song, Yi, 2022. "Tax rebates, technological innovation and sustainable development: Evidence from Chinese micro-level data," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    9. Earnhart, Dietrich & Germeshausen, Robert & von Graevenitz, Kathrine, 2022. "Effects of information-based regulation on financial outcomes: Evidence from the European Union's public emission registry," ZEW Discussion Papers 22-015, ZEW - Leibniz Centre for European Economic Research.
    10. Telle, Kjetil & Larsson, Jan, 2007. "Do environmental regulations hamper productivity growth? How accounting for improvements of plants' environmental performance can change the conclusion," Ecological Economics, Elsevier, vol. 61(2-3), pages 438-445, March.
    11. Wu, Haitao & Hao, Yu & Ren, Siyu, 2020. "How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China," Energy Economics, Elsevier, vol. 91(C).
    12. Guo, Shu & Zhang, ZhongXiang, 2023. "Green credit policy and total factor productivity: Evidence from Chinese listed companies," Energy Economics, Elsevier, vol. 128(C).
    13. Kiuila, O. & Rutherford, T.F., 2013. "Piecewise smooth approximation of bottom–up abatement cost curves," Energy Economics, Elsevier, vol. 40(C), pages 734-742.
    14. He, Yiqing & Ding, Xin & Yang, Chuchu, 2021. "Do environmental regulations and financial constraints stimulate corporate technological innovation? Evidence from China," Journal of Asian Economics, Elsevier, vol. 72(C).
    15. Stefan Ambec & Paul Lanoie, 2007. "When and Why Does It Pay To Be Green?," CIRANO Working Papers 2007s-20, CIRANO.
    16. Roberto Antonietti & Alberto Marzucchi, 2013. "Green Investment Strategies and Export Performance: A Firm-level Investigation," Working Papers 2013.76, Fondazione Eni Enrico Mattei.
    17. Johan Brolund & Robert Lundmark, 2017. "Effect of Environmental Regulation Stringency on the Pulp and Paper Industry," Sustainability, MDPI, vol. 9(12), pages 1-16, December.
    18. Lu, Yunguo & Zhang, Lin, 2022. "National mitigation policy and the competitiveness of Chinese firms," Energy Economics, Elsevier, vol. 109(C).
    19. Ambec, Stefan & Barla, Philippe, 2001. "Productivité et réglementation environnementale: une analyse de l'hypothèse de Porter," Cahiers de recherche 0107, Université Laval - Département d'économique.
    20. You Wu & Jichuan Sheng & Fang Huang, 2015. "China’s future investments in environmental protection and control of manufacturing industry: lessons from developed countries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1889-1901, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:175-:d:301618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.