IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v40y2013icp734-742.html
   My bibliography  Save this article

Piecewise smooth approximation of bottom–up abatement cost curves

Author

Listed:
  • Kiuila, O.
  • Rutherford, T.F.

Abstract

Top–down models usually include piecewise-smooth functions to describe marginal cost curves, while bottom–up models use step function curves. When a bottom–up cost curve is available, we can explicitly represent this curve with a top–down model in order to replicate its shape instead of using arbitrary assumptions. We propose several methods to approximate a piecewise function from a step function using constant elasticity of substitution technologies. Specifically, we consider a pollution abatement sector and calibrate the parameters of the abatement function in order to allow proper assessment of the economic effects of an environmental policy. Our methodology can be applied to any sector characterized by decreasing returns to scale technologies. We conclude that the elasticities of substitution need not be estimated only on the basis of historical data, but can be precisely calibrated on the basis of engineering estimates of technology potential.

Suggested Citation

  • Kiuila, O. & Rutherford, T.F., 2013. "Piecewise smooth approximation of bottom–up abatement cost curves," Energy Economics, Elsevier, vol. 40(C), pages 734-742.
  • Handle: RePEc:eee:eneeco:v:40:y:2013:i:c:p:734-742
    DOI: 10.1016/j.eneco.2013.07.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988313001618
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2013.07.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhihao Yu, 2005. "Environmental Protection: A Theory of Direct and Indirect Competition for Political Influence," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(1), pages 269-286.
    2. Dale W. Jorgenson & Peter J. Wilcoxen, 1990. "Environmental Regulation and U.S. Economic Growth," RAND Journal of Economics, The RAND Corporation, vol. 21(2), pages 314-340, Summer.
    3. Kiuila, O. & Rutherford, T.F., 2013. "The cost of reducing CO2 emissions: Integrating abatement technologies into economic modeling," Ecological Economics, Elsevier, vol. 87(C), pages 62-71.
    4. Victor Ginsburgh & Michiel Keyzer, 2002. "The Structure of Applied General Equilibrium Models," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262571579, December.
    5. Wing, Ian Sue, 2006. "The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technologies and the cost of limiting US CO2 emissions," Energy Policy, Elsevier, vol. 34(18), pages 3847-3869, December.
    6. Sato, Ryuzo, 1976. "Self-Dual Preferences," Econometrica, Econometric Society, vol. 44(5), pages 1017-1032, September.
    7. Shoven,John B. & Whalley,John, 1992. "Applying General Equilibrium," Cambridge Books, Cambridge University Press, number 9780521266550, January.
    8. Perroni, Carlo & Rutherford, Thomas F, 1998. "A Comparison of the Performance of Flexible Functional Forms for Use in Applied General Equilibrium Modelling," Computational Economics, Springer;Society for Computational Economics, vol. 11(3), pages 245-263, June.
    9. Klepper, Gernot & Peterson, Sonja, 2006. "Marginal abatement cost curves in general equilibrium: The influence of world energy prices," Resource and Energy Economics, Elsevier, vol. 28(1), pages 1-23, January.
    10. Jaccard, Mark & Murphy, Rose & Rivers, Nic, 2004. "Energy-environment policy modeling of endogenous technological change with personal vehicles: combining top-down and bottom-up methods," Ecological Economics, Elsevier, vol. 51(1-2), pages 31-46, November.
    11. Gerlagh, Reyer & Dellink, Rob & Hofkes, Marjan & Verbruggen, Harmen, 2002. "A measure of sustainable national income for the Netherlands," Ecological Economics, Elsevier, vol. 41(1), pages 157-174, April.
    12. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
    13. Kiuila, Olga & Peszko, Grzegorz, 2006. "Sectoral and macroeconomic impacts of the large combustion plants in Poland: A general equilibrium analysis," Energy Economics, Elsevier, vol. 28(3), pages 288-307, May.
    14. Christoph Bohringer, Andreas Loschel and Thomas F. Rutherford, 2006. "Efficiency Gains from "What"-Flexibility in Climate Policy An Integrated CGE Assessment," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 405-424.
    15. Baker, Erin & Clarke, Leon & Shittu, Ekundayo, 2008. "Technical change and the marginal cost of abatement," Energy Economics, Elsevier, vol. 30(6), pages 2799-2816, November.
    16. Rob B. Dellink, 2005. "Modelling the Costs of Environmental Policy," Books, Edward Elgar Publishing, number 3637.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui M. Pereira & Alfredo M. Pereira, 2017. "The Economic and Budgetary Impact of Climate Policy in Portugal: Carbon Taxation in a Dynamic General Equilibrium Model with Endogenous Public Sector Behavior," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(2), pages 231-259, June.
    2. Ahn, Young-Hwan & Jeon, Wooyoung, 2019. "Power sector reform and CO2 abatement costs in Korea," Energy Policy, Elsevier, vol. 131(C), pages 202-214.
    3. Weitzel, Matthias & Saveyn, Bert & Vandyck, Toon, 2019. "Including bottom-up emission abatement technologies in a large-scale global economic model for policy assessments," Energy Economics, Elsevier, vol. 83(C), pages 254-263.
    4. Halkos, George & Tzeremes, Nickolaos & Kourtzidis, Stavros, 2014. "Abating CO2 emissions in the Greek energy and industry sectors," MPRA Paper 60807, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonzalez, Mikel & Dellink, Rob B., 2006. "Impact of climate policy on the Basque country," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 6(12), pages 1-27.
    2. Halkos, George & Tzeremes, Nickolaos & Kourtzidis, Stavros, 2014. "Abating CO2 emissions in the Greek energy and industry sectors," MPRA Paper 60807, University Library of Munich, Germany.
    3. Kiula, Olga & Markandya, Anil & Ščasný, Milan & Menkyna Tsuchimoto, Fusako, 2014. "The Economic and Environmental Effects of Taxing Air Pollutants and CO2: Lessons from a Study of the Czech Republic," MPRA Paper 66599, University Library of Munich, Germany, revised Oct 2015.
    4. Rob Dellink & Dominique Van der Mensbrugghe & Bert Saveyn, 2020. "Shaping Baseline Scenarios of Economic Activity with CGE Models: Introduction to the Special Issue," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 1-27, June.
    5. Haider A. Khan, 2007. "Social Accounting Matrix: A Very Short Introduction for Economic Modeling," CIRJE F-Series CIRJE-F-477, CIRJE, Faculty of Economics, University of Tokyo.
    6. Julien Lefevre, 2018. "Modeling the Socioeconomic Impacts of the Adoption of a Carbon Pricing Instrument – Literature review," CIRED Working Papers hal-03128619, HAL.
    7. Ziheng Niu & Jianliang Xiong & Xuesong Ding & Yao Wu, 2022. "Analysis of China’s Carbon Peak Achievement in 2025," Energies, MDPI, vol. 15(14), pages 1-18, July.
    8. Tomoki Ishikura & Fuga Yokoyama, 2022. "Regional economic effects of the Ring Road project in the Greater Tokyo Area: A spatial CGE approach," Papers in Regional Science, Wiley Blackwell, vol. 101(4), pages 811-837, August.
    9. Smith, Richard D. & Yago, Milton & Millar, Michael & Coast, Jo, 2005. "Assessing the macroeconomic impact of a healthcare problem: The application of computable general equilibrium analysis to antimicrobial resistance," Journal of Health Economics, Elsevier, vol. 24(6), pages 1055-1075, November.
    10. Dellink, Rob & van Ierland, Ekko, 2006. "Pollution abatement in the Netherlands: A dynamic applied general equilibrium assessment," Journal of Policy Modeling, Elsevier, vol. 28(2), pages 207-221, February.
    11. Zhu, Xueqin & van Ierland, Ekko, 2006. "The enlargement of the European Union: Effects on trade and emissions of greenhouse gases," Ecological Economics, Elsevier, vol. 57(1), pages 1-14, April.
    12. Taran Faehn and Elisabeth T. Isaksen, 2016. "Diffusion of Climate Technologies in the Presence of Commitment Problems," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    13. Kesicki, Fabian, 2013. "What are the key drivers of MAC curves? A partial-equilibrium modelling approach for the UK," Energy Policy, Elsevier, vol. 58(C), pages 142-151.
    14. Zhang, Jin Shui, 2011. "The analytical solution of balanced growth of non-linear dynamic multi-sector economic model," Economic Modelling, Elsevier, vol. 28(1), pages 410-421.
    15. Nabil Annabi & John Cockburn & Bernard Decaluwé, 2006. "Functional Forms and Parametrization of CGE Models," Working Papers MPIA 2006-04, PEP-MPIA.
    16. Jaewon Jung, 2021. "Economic Transformation and Sustainable Development through Multilateral Free Trade Agreements," Sustainability, MDPI, vol. 13(5), pages 1-17, February.
    17. repec:dgr:rugsom:99c01 is not listed on IDEAS
    18. Kuosmanen, Timo & Vöhringer, Frank & Dellink, Rob B., 2004. "A Proposal for the Attribution of Market Leakage to CDM Projects," HWWA Discussion Papers 262, Hamburg Institute of International Economics (HWWA).
    19. Morgenstern, Richard D. & Pizer, William A. & Shih, Jhih-Shyang, 2002. "Jobs Versus the Environment: An Industry-Level Perspective," Journal of Environmental Economics and Management, Elsevier, vol. 43(3), pages 412-436, May.
    20. Janos Varga & Werner Roeger & Jan in ’t Veld, 2021. "E-QUEST – A Multi-Region Sectoral Dynamic General Equilibrium Model with Energy Model Description and Applications to Reach the EU Climate Targets," European Economy - Discussion Papers 146, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    21. Dellink, Rob & Brouwer, Roy & Linderhof, Vincent & Stone, Karin, 2011. "Bio-economic modeling of water quality improvements using a dynamic applied general equilibrium approach," Ecological Economics, Elsevier, vol. 71(C), pages 63-79.

    More about this item

    Keywords

    Elasticity of substitution; Calibration; Top–down modeling; Decreasing returns to scale;
    All these keywords.

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:40:y:2013:i:c:p:734-742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.