IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i7p1883-d218146.html
   My bibliography  Save this article

Water Security Assessment of the Grand River Watershed in Southwestern Ontario, Canada

Author

Listed:
  • Baljeet Kaur

    (School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada)

  • Narayan Kumar Shrestha

    (School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada)

  • Prasad Daggupati

    (School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada)

  • Ramesh Pal Rudra

    (School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada)

  • Pradeep Kumar Goel

    (Ontario Ministry of the Environment, Conservation and Parks, Etobicoke, ON M9P 3V6, Canada)

  • Rituraj Shukla

    (School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada)

  • Nabil Allataifeh

    (School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada)

Abstract

Water security is the capability of a community to have adequate access to good quality and a sufficient quantity of water as well as safeguard resources for the future generations. Understanding the spatial and temporal variabilities of water security can play a pivotal role in sustainable management of fresh water resources. In this study, a long-term water security analysis of the Grand River watershed (GRW), Ontario, Canada, was carried out using the soil and water assessment tool (SWAT). Analyses on blue and green water availability and water security were carried out by dividing the GRW into eight drainage zones. As such, both anthropogenic as well as environmental demand were considered. In particular, while calculating blue water scarcity, three different methods were used in determining the environmental flow requirement, namely, the presumptive standards method, the modified low stream-flow method, and the variable monthly flow method. Model results showed that the SWAT model could simulate streamflow dynamics of the GRW with ‘good’ to ‘very good’ accuracy with an average Nash–Sutcliffe Efficiency of 0.75, R 2 value of 0.78, and percentage of bias (PBIAS) of 8.23%. Sen’s slope calculated using data from over 60 years confirmed that the blue water flow, green water flow, and storage had increasing trends. The presumptive standards method and the modified low stream-flow method, respectively, were found to be the most and least restrictive method in calculating environmental flow requirements. While both green (0.4–1.1) and blue (0.25–2.0) water scarcity values showed marked temporal and spatial variabilities, blue water scarcity was found to be the highest in urban areas on account of higher water usage and less blue water availability. Similarly, green water scarcity was found to be highest in zones with higher temperatures and intensive agricultural practices. We believe that knowledge of the green and blue water security situation would be helpful in sustainable water resources management of the GRW and help to identify hotspots that need immediate attention.

Suggested Citation

  • Baljeet Kaur & Narayan Kumar Shrestha & Prasad Daggupati & Ramesh Pal Rudra & Pradeep Kumar Goel & Rituraj Shukla & Nabil Allataifeh, 2019. "Water Security Assessment of the Grand River Watershed in Southwestern Ontario, Canada," Sustainability, MDPI, vol. 11(7), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:1883-:d:218146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/7/1883/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/7/1883/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tom Gleeson & Yoshihide Wada & Marc F. P. Bierkens & Ludovicus P. H. van Beek, 2012. "Water balance of global aquifers revealed by groundwater footprint," Nature, Nature, vol. 488(7410), pages 197-200, August.
    2. Binbin Zhang & Narayan Kumar Shrestha & Prasad Daggupati & Ramesh Rudra & Rituraj Shukla & Baljeet Kaur & Jun Hou, 2018. "Quantifying the Impacts of Climate Change on Streamflow Dynamics of Two Major Rivers of the Northern Lake Erie Basin in Canada," Sustainability, MDPI, vol. 10(8), pages 1-23, August.
    3. Logsdon, Rebecca A. & Chaubey, Indrajeet, 2013. "A quantitative approach to evaluating ecosystem services," Ecological Modelling, Elsevier, vol. 257(C), pages 57-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roy Brouwer & Rute Pinto & Jorge Garcia‐Hernandez & Xingtong Li & Merrin Macrae & Predrag Rajsic & Wanhong Yang & Yongbo Liu & Mark Anderson & Louise Heyming, 2023. "Spatial optimization of nutrient reduction measures on agricultural land to improve water quality: A coupled modeling approach," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 71(3-4), pages 329-353, September.
    2. Poornima Unnikrishnan & Kumaraswamy Ponnambalam & Nirupama Agrawal & Fakhri Karray, 2023. "Joint Flood Risks in the Grand River Watershed," Sustainability, MDPI, vol. 15(12), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aparicio, Jesus & Tenza-Abril, Antonio & Borg, Malcolm & Galea, John & Candela, Lucila, 2018. "Agricultural irrigation of vine crops from desalinated and brackish groundwater under an economic perspective. A case study in Siġġiewi, Malta," MPRA Paper 92268, University Library of Munich, Germany, revised 04 Sep 2018.
    2. Jayanta Das & A. T. M. Sakiur Rahman & Tapash Mandal & Piu Saha, 2021. "Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7289-7309, May.
    3. Jérôme Texier & Julio Gonçalvès & Agnès Rivière, 2022. "Numerical Assessment of Groundwater Flowpaths below a Streambed in Alluvial Plains Impacted by a Pumping Field," Post-Print hal-03629140, HAL.
    4. Roy Brouwer & Rute Pinto & Jorge Garcia‐Hernandez & Xingtong Li & Merrin Macrae & Predrag Rajsic & Wanhong Yang & Yongbo Liu & Mark Anderson & Louise Heyming, 2023. "Spatial optimization of nutrient reduction measures on agricultural land to improve water quality: A coupled modeling approach," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 71(3-4), pages 329-353, September.
    5. Laura M. Norman & Miguel L. Villarreal & Rewati Niraula & Mark Haberstich & Natalie R. Wilson, 2019. "Modelling Development of Riparian Ranchlands Using Ecosystem Services at the Aravaipa Watershed, SE Arizona," Land, MDPI, vol. 8(4), pages 1-21, April.
    6. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    7. Xueru Guo & Rui Zuo & Li Meng & Jinsheng Wang & Yanguo Teng & Xin Liu & Minhua Chen, 2018. "Seasonal and Spatial Variability of Anthropogenic and Natural Factors Influencing Groundwater Quality Based on Source Apportionment," IJERPH, MDPI, vol. 15(2), pages 1-19, February.
    8. Yang, Jia & Ren, Wei & Ouyang, Ying & Feng, Gary & Tao, Bo & Granger, Joshua J. & Poudel, Krishna P., 2019. "Projection of 21st century irrigation water requirement across the Lower Mississippi Alluvial Valley," Agricultural Water Management, Elsevier, vol. 217(C), pages 60-72.
    9. Sovacool, Benjamin K. & Saunders, Harry, 2014. "Competing policy packages and the complexity of energy security," Energy, Elsevier, vol. 67(C), pages 641-651.
    10. Gao, Jie & Wang, Rusong & Huang, Jinlou & Liu, Min, 2015. "Application of BMP to urban runoff control using SUSTAIN model: Case study in an industrial area," Ecological Modelling, Elsevier, vol. 318(C), pages 177-183.
    11. McCartney, Matthew & Rex, William & Yu, Winston & Uhlenbrook, Stefan & von Gnechten, Rachel, 2022. "Change in global freshwater storage," IWMI Reports 329159, International Water Management Institute.
    12. Davide Marino & Giampiero Mazzocchi & Davide Pellegrino & Veridiana Barucci, 2022. "Integrated Multi-Level Assessment of Ecosystem Services (ES): The Case of the Casal del Marmo Agricultural Park Area in Rome (Italy)," Land, MDPI, vol. 11(11), pages 1-15, November.
    13. M. W. Straatsma & P. T. M. Vermeulen & M. J. M. Kuijper & M. Bonte & F. G. M. Niele & M. F. P. Bierkens, 2016. "Rapid Screening of Operational Freshwater Availability Using Global Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3013-3026, July.
    14. Staes, Jan & Broekx, Steven & Van Der Biest, Katrien & Vrebos, Dirk & Olivier, Beauchard & De Nocker, Leo & Liekens, Inge & Poelmans, Lien & Verheyen, Kris & Jeroen, Panis & Meire, Patrick, 2017. "Quantification of the potential impact of nature conservation on ecosystem services supply in the Flemish Region: A cascade modelling approach," Ecosystem Services, Elsevier, vol. 24(C), pages 124-137.
    15. Huilin Li & Zuomin Wen, 2023. "A Market-Based Payment Study for Forest Water Purification Service in Loess Plateau of Yellow River Basin, China," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    16. Matthew Sanderson & R. Frey, 2015. "Structural impediments to sustainable groundwater management in the High Plains Aquifer of western Kansas," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(3), pages 401-417, September.
    17. J. Joseph Speidel & Jane N. O’Sullivan, 2023. "Advancing the Welfare of People and the Planet with a Common Agenda for Reproductive Justice, Population, and the Environment," World, MDPI, vol. 4(2), pages 1-29, May.
    18. Ward, Frank A., 2023. "Innovations for the Water Resource Economics Curriculum: Training the Next Generation," Applied Economics Teaching Resources (AETR), Agricultural and Applied Economics Association, vol. 5(3), September.
    19. G. Herrera-Franco & T. Gavín-Quinchuelaa & N. Alvarado-Macancelaa & P. Carrión-Mero, 2017. "Participative Analysis of SocioEcological Dynamics and Interactions. A Case Study of The Manglaralto Coastal Aquifer, Santa Elena-Ecuador," Malaysian Journal of Sustainable Agriculture (MJSA), Zibeline International Publishing, vol. 1(1), pages 19-22, January.
    20. Amit Kumar & Abhilash Singh & Kumar Gaurav, 2023. "Assessing the synergic effect of land use and climate change on the upper Betwa River catchment in Central India under present, past, and future climate scenarios," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5163-5184, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:1883-:d:218146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.