IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i6p1520-d213464.html
   My bibliography  Save this article

Effects of N Addition Frequency and Quantity on Hydrocotyle vulgaris Growth and Greenhouse Gas Emissions from Wetland Microcosms

Author

Listed:
  • Qian-Wei Li

    (School of Nature Conservation, Beijing Forestry University, Beijing 100083, China)

  • Xiao-Ya Zhang

    (School of Nature Conservation, Beijing Forestry University, Beijing 100083, China)

  • Jun-Qin Gao

    (School of Nature Conservation, Beijing Forestry University, Beijing 100083, China)

  • Ming-Hua Song

    (Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, A11, Datun Road, Chaoyang District, Beijing 100101, China)

  • Jin-Feng Liang

    (School of Nature Conservation, Beijing Forestry University, Beijing 100083, China)

  • Yi Yue

    (School of Nature Conservation, Beijing Forestry University, Beijing 100083, China)

Abstract

(1) Background: Increased attention has been paid to atmospheric nitrogen (N) deposition caused by human activities. N deposition quantity has seriously affected plant productivity and greenhouse gas emissions in wetlands, but the effects of N deposition frequency remain unclear. (2) Methods: We assembled microcosms, which contained vegetative individuals (ramets) of Hydrocotyle vulgaris and soil and subjected them to three frequencies (N addition 1, 2, and 14 times during the experimental period) crossed with three quantities (5, 15, and 30 g N m −2 yr −1 ) for 90 days. (3) Results: The quantity of N addition significantly increased the root, stem biomass, and ramets number of H. vulgaris , but decreased the spike biomass. N addition quantity significantly promoted N 2 O emission and inhibited CH 4 emission but had no significant effect on CO 2 emission. The increasing frequency of N addition significantly promoted the root-to-shoot ratio and decreased N 2 O emission under high N addition quantity. (4) Conclusions: In conclusion, N addition alters the reproductive strategy of H. vulgaris and enhances its invasiveness, promoting N 2 O emission but not the CO 2 equivalent of the H. vulgaris -soil system.

Suggested Citation

  • Qian-Wei Li & Xiao-Ya Zhang & Jun-Qin Gao & Ming-Hua Song & Jin-Feng Liang & Yi Yue, 2019. "Effects of N Addition Frequency and Quantity on Hydrocotyle vulgaris Growth and Greenhouse Gas Emissions from Wetland Microcosms," Sustainability, MDPI, vol. 11(6), pages 1-12, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1520-:d:213464
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/6/1520/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/6/1520/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tek B. Sapkota & Jeetendra P. Aryal & Arun Khatri-Chhetri & Paresh B. Shirsath & Ponraj Arumugam & Clare M. Stirling, 2018. "Identifying high-yield low-emission pathways for the cereal production in South Asia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(4), pages 621-641, April.
    2. Xuejun Liu & Ying Zhang & Wenxuan Han & Aohan Tang & Jianlin Shen & Zhenling Cui & Peter Vitousek & Jan Willem Erisman & Keith Goulding & Peter Christie & Andreas Fangmeier & Fusuo Zhang, 2013. "Enhanced nitrogen deposition over China," Nature, Nature, vol. 494(7438), pages 459-462, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingjing Wang & Jie Tang & Zhaoyang Li & Wei Yang & Ping Yang & Yunke Qu, 2020. "Corn and Rice Cultivation Affect Soil Organic and Inorganic Carbon Storage through Altering Soil Properties in Alkali Sodic Soils, Northeast of China," Sustainability, MDPI, vol. 12(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Wesenbeeck, C.F.A. & Keyzer, M.A. & van Veen, W.C.M. & Qiu, H., 2021. "Can China's overuse of fertilizer be reduced without threatening food security and farm incomes?," Agricultural Systems, Elsevier, vol. 190(C).
    2. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    3. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    4. Syed Ayyaz Javed & Muhammad Saleem Arif & Sher Muhammad Shahzad & Muhammad Ashraf & Rizwana Kausar & Taimoor Hassan Farooq & M. Iftikhar Hussain & Awais Shakoor, 2021. "Can Different Salt Formulations Revert the Depressing Effect of Salinity on Maize by Modulating Plant Biochemical Attributes and Activating Stress Regulators through Improved N Supply?," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    5. Khor, Ling & Zeller, Manfred, 2015. "Perception of Substandard Fertilizer and Its Impact on Use Intensity," 2015 Conference, August 9-14, 2015, Milan, Italy 211843, International Association of Agricultural Economists.
    6. Rosalina Armando Tamele & Hideto Ueno & Yo Toma & Nobuki Morita, 2020. "Nitrogen Recoveries and Nitrogen Use Efficiencies of Organic Fertilizers with Different C/N Ratios in Maize Cultivation with Low-Fertile Soil by 15 N Method," Agriculture, MDPI, vol. 10(7), pages 1-13, July.
    7. Ke Xu & Chunmei Wang & Xintong Yang, 2017. "Five-year study of the effects of simulated nitrogen deposition levels and forms on soil nitrous oxide emissions from a temperate forest in northern China," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-18, December.
    8. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    10. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Mirhaj, M. & Razzak, M.A. & Wahab, M.A., 2014. "Comparison of nitrogen balances and efficiencies in rice cum prawn vs. rice cum fish cultures in Mymensingh, North-Eastern Bangladesh," Agricultural Systems, Elsevier, vol. 125(C), pages 54-62.
    12. Francisco J. Areal & Wantao Yu & Kevin Tansey & Jiahuan Liu, 2022. "Measuring Sustainable Intensification Using Satellite Remote Sensing Data," Sustainability, MDPI, vol. 14(3), pages 1-13, February.
    13. Wang, Xiaolong & Chen, Yuanquan & Sui, Peng & Yan, Peng & Yang, Xiaolei & Gao, Wangsheng, 2017. "Preliminary analysis on economic and environmental consequences of grain production on different farm sizes in North China Plain," Agricultural Systems, Elsevier, vol. 153(C), pages 181-189.
    14. Xue Meng & Zhiguo Zhu & Jing Xue & Chunguang Wang & Xiaoxin Sun, 2023. "Methane and Nitrous Oxide Emissions from a Temperate Peatland under Simulated Enhanced Nitrogen Deposition," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    15. Zhang, Guo & Wang, Xiaoke & Sun, Binfeng & Zhao, Hong & Lu, Fei & Zhang, Lu, 2016. "Status of mineral nitrogen fertilization and net mitigation potential of the state fertilization recommendation in Chinese cropland," Agricultural Systems, Elsevier, vol. 146(C), pages 1-10.
    16. Longyu Shi & Miao Zhang & Yajing Zhang & Bin Yang & Huaping Sun & Tong Xu, 2018. "Comprehensive Analysis of Nitrogen Deposition in Urban Ecosystem: A Case Study of Xiamen City, China," Sustainability, MDPI, vol. 10(12), pages 1-20, December.
    17. Baozhi Li & Bin Guo & Qibiao Zhu & Ni Zhuo, 2023. "Impact of Technical Training and Personalized Information Support on Farmers’ Fertilization Behavior: Evidence from China," Sustainability, MDPI, vol. 15(11), pages 1-11, June.
    18. Liu, Jiaxin & Li, Yan & Zheng, Yiming & Tong, Sijie & Zhang, Xuechen & Zhao, Ying & Zheng, Wei & Zhai, Bingnian & Wang, Zhaohui & Zhang, Xucheng & Li, Ziyan & Zamanian, Kazem, 2022. "The spatial and temporal distribution of nitrogen flow in the agricultural system and green development assessment of the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 263(C).
    19. Tianjie Lei & Jianjun Wu & Jiabao Wang & Changliang Shao & Weiwei Wang & Dongpan Chen & Xiangyu Li, 2022. "The Net Influence of Drought on Grassland Productivity over the Past 50 Years," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    20. Zehui Liu & Harald E. Rieder & Christian Schmidt & Monika Mayer & Yixin Guo & Wilfried Winiwarter & Lin Zhang, 2023. "Optimal reactive nitrogen control pathways identified for cost-effective PM2.5 mitigation in Europe," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1520-:d:213464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.