IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i2p452-d198260.html
   My bibliography  Save this article

Using Pareto Optimization to Support Supply Chain Network Design within Environmental Footprint Impact Assessment

Author

Listed:
  • Tsai Chi Kuo

    (Department of Industrial and Systems Engineering, Chung Yuan Christian University, Taoyuan City 320, Taiwan)

  • Yile Lee

    (Department of Industrial and Systems Engineering, Chung Yuan Christian University, Taoyuan City 320, Taiwan)

Abstract

A product environmental footprint is a multi-criteria measure for environmental sustainability. Most of these environmental criteria are either synergies (non-trade-offs) or compromises (trade-offs) within environmental metrics. This forms a multi-objective problem of supply chain network design. The product environmental footprint is an aid or tool that enterprises may use to measure and improve the life cycle environmental performance of their products. In this research, a multi-criteria method, Pareto optimization, is used to design a supply chain network based on the results of a product environmental footprint. In Pareto optimization, two objectives are formulated: Environmental impact and cost. Using the results of this research, designers will be able to choose a material with a lower environmental impact and supply chain managers will be able to select suppliers with lower environmental impacts. A case study of industry practice is also analyzed. It shows an environmental footprint is useful for the supply chain design network.

Suggested Citation

  • Tsai Chi Kuo & Yile Lee, 2019. "Using Pareto Optimization to Support Supply Chain Network Design within Environmental Footprint Impact Assessment," Sustainability, MDPI, vol. 11(2), pages 1-13, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:452-:d:198260
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/2/452/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/2/452/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert B. Handfield & Paul D. Cousins & Benn Lawson & Kenneth J. Petersen, 2015. "How Can Supply Management Really Improve Performance? A Knowledge-Based Model of Alignment Capabilities," Journal of Supply Chain Management, Institute for Supply Management, vol. 51(3), pages 3-17, July.
    2. Hua, Guowei & Cheng, T.C.E. & Wang, Shouyang, 2011. "Managing carbon footprints in inventory management," International Journal of Production Economics, Elsevier, vol. 132(2), pages 178-185, August.
    3. Cerchione, Roberto & Esposito, Emilio, 2016. "A systematic review of supply chain knowledge management research: State of the art and research opportunities," International Journal of Production Economics, Elsevier, vol. 182(C), pages 276-292.
    4. Sundarakani, Balan & de Souza, Robert & Goh, Mark & Wagner, Stephan M. & Manikandan, Sushmera, 2010. "Modeling carbon footprints across the supply chain," International Journal of Production Economics, Elsevier, vol. 128(1), pages 43-50, November.
    5. Tsai-Chi Kuo & Ming-Lang Tseng & Hsiao-Min Chen & Ping-Shun Chen & Po-Chen Chang, 2018. "Design and Analysis of Supply Chain Networks with Low Carbon Emissions," Computational Economics, Springer;Society for Computational Economics, vol. 52(4), pages 1353-1374, December.
    6. Rezapour, Shabnam & Farahani, Reza Zanjirani & Pourakbar, Morteza, 2017. "Resilient supply chain network design under competition: A case study," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1017-1035.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rena Kondo & Yuki Kinoshita & Tetsuo Yamada, 2019. "Green Procurement Decisions with Carbon Leakage by Global Suppliers and Order Quantities under Different Carbon Tax," Sustainability, MDPI, vol. 11(13), pages 1-19, July.
    2. Francisco Portillo & Rosa María García & Alfredo Alcayde & José Antonio Gázquez & Manuel Fernández-Ros & Nuria Novas, 2021. "Prospective Environmental and Economic Assessment of a Sensor Network," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    3. Petchprakai Sirilertsuwan & Sébastien Thomassey & Xianyi Zeng, 2020. "A Strategic Location Decision-Making Approach for Multi-Tier Supply Chain Sustainability," Sustainability, MDPI, vol. 12(20), pages 1-37, October.
    4. Ruozhen Qiu & Shunpeng Shi & Yue Sun, 2019. "A p -Robust Green Supply Chain Network Design Model under Uncertain Carbon Price and Demand," Sustainability, MDPI, vol. 11(21), pages 1-22, October.
    5. Yuki Kinoshita & Takaki Nagao & Hiromasa Ijuin & Keisuke Nagasawa & Tetsuo Yamada & Surendra M. Gupta, 2023. "Utilization of Free Trade Agreements to Minimize Costs and Carbon Emissions in the Global Supply Chain for Sustainable Logistics," Logistics, MDPI, vol. 7(2), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xiaoping & He, Ping & Xu, Hao & Zhang, Quanpeng, 2017. "Supply chain coordination with green technology under cap-and-trade regulation," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 433-442.
    2. Morgan, Tyler R. & Roath, Anthony S. & Glenn Richey, Robert, 2023. "How risk, transparency, and knowledge influence the adaptability and flexibility dimensions of the responsiveness view," Journal of Business Research, Elsevier, vol. 158(C).
    3. Meng, Xiaoge & Yao, Zhong & Nie, Jiajia & Zhao, Yingxue & Li, Zenglu, 2018. "Low-carbon product selection with carbon tax and competition: Effects of the power structure," International Journal of Production Economics, Elsevier, vol. 200(C), pages 224-230.
    4. Choudhary, Alok & Suman, Ravi & Dixit, Vijaya & Tiwari, M.K. & Fernandes, Kiran Jude & Chang, Pei-Chann, 2015. "An optimization model for a monopolistic firm serving an environmentally conscious market: Use of chemical reaction optimization algorithm," International Journal of Production Economics, Elsevier, vol. 164(C), pages 409-420.
    5. Zhitao Xu & Adel Elomri & Shaligram Pokharel & Fatih Mutlu, 2019. "The Design of Green Supply Chains under Carbon Policies: A Literature Review of Quantitative Models," Sustainability, MDPI, vol. 11(11), pages 1-20, May.
    6. Xu, Xiaoping & Zhang, Wei & He, Ping & Xu, Xiaoyan, 2017. "Production and pricing problems in make-to-order supply chain with cap-and-trade regulation," Omega, Elsevier, vol. 66(PB), pages 248-257.
    7. Mateen, Arqum & Chatterjee, Ashis K, 2015. "Vendor Managed Inventory System with Emission Related Costs," Working papers 185, Indian Institute of Management Kozhikode.
    8. Qiang Du & Jiajie Zhou, 2022. "Evolution of Low Carbon Supply Chain Research: A Systematic Bibliometric Analysis," IJERPH, MDPI, vol. 19(23), pages 1-20, November.
    9. Chia-Wei Hsu & Tsai-Chi Kuo & Guey-Shin Shyu & Pi-Shen Chen, 2014. "Low Carbon Supplier Selection in the Hotel Industry," Sustainability, MDPI, vol. 6(5), pages 1-27, May.
    10. Yann Bouchery & Asma Ghaffari & Zied Jemai & Jan Fransoo, 2016. "Sustainable transportation and order quantity: insights from multiobjective optimization," Flexible Services and Manufacturing Journal, Springer, vol. 28(3), pages 367-396, September.
    11. Zheng, Huan-yu & Wang, Ling, 2015. "Reduction of carbon emissions and project makespan by a Pareto-based estimation of distribution algorithm," International Journal of Production Economics, Elsevier, vol. 164(C), pages 421-432.
    12. Choi, Tsan-Ming, 2013. "Local sourcing and fashion quick response system: The impacts of carbon footprint tax," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 55(C), pages 43-54.
    13. Longfei He & Daozhi Zhao & Liangjie Xia, 2015. "Game Theoretic Analysis of Carbon Emission Abatement in Fashion Supply Chains Considering Vertical Incentives and Channel Structures," Sustainability, MDPI, vol. 7(4), pages 1-30, April.
    14. Longfei He & Chenglin Hu & Daozhi Zhao & Haili Lu & Xiaoxi Fu & Yiyu Li, 2016. "Carbon emission mitigation through regulatory policies and operations adaptation in supply chains: theoretic developments and extensions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 179-207, November.
    15. Y Bouchery & Asma Ghaffari & Zied Jemai & Jan C Fransoo, 2016. "Sustainable transportation and order quantity: insights from multiobjective optimization," Post-Print hal-01954465, HAL.
    16. Koh, S.C.L. & Gunasekaran, A. & Tseng, C.S., 2012. "Cross-tier ripple and indirect effects of directives WEEE and RoHS on greening a supply chain," International Journal of Production Economics, Elsevier, vol. 140(1), pages 305-317.
    17. Yu-Chung Tsao & Vu-Thuy Linh & Jye-Chyi Lu & Vincent Yu, 2018. "A supply chain network with product remanufacturing and carbon emission considerations: a two-phase design," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 693-705, March.
    18. Choudhary, Alok & Sarkar, Sagar & Settur, Srikar & Tiwari, M.K., 2015. "A carbon market sensitive optimization model for integrated forward–reverse logistics," International Journal of Production Economics, Elsevier, vol. 164(C), pages 433-444.
    19. Tsai-Chi Kuo & Ming-Lang Tseng & Hsiao-Min Chen & Ping-Shun Chen & Po-Chen Chang, 2018. "Design and Analysis of Supply Chain Networks with Low Carbon Emissions," Computational Economics, Springer;Society for Computational Economics, vol. 52(4), pages 1353-1374, December.
    20. Li, Hui-Chieh, 2015. "Optimal delivery strategies considering carbon emissions, time-dependent demands and demand–supply interactions," European Journal of Operational Research, Elsevier, vol. 241(3), pages 739-748.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:452-:d:198260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.