IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i2p326-d196504.html
   My bibliography  Save this article

A Reactive Power Compensation Strategy for Voltage Stability Challenges in the Korean Power System with Dynamic Loads

Author

Listed:
  • Yunhwan Lee

    (Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea)

  • Hwachang Song

    (Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea)

Abstract

This paper describes a methodology and specifics for technical studies on fault-induced delayed voltage recovery (FIDVR) mitigation to ensure power system reliability. Optimal locations of the dynamic volts-ampere-reactive (VAR) sources are determined for addressing the FIDVR issues in the voltage stability analysis and assessment methodology. We propose a voltage stability analysis method for planning dynamic VAR sources for bettering electric power transmission systems under contingency conditions. A time-domain dynamic simulation is performed to assess short-term voltage stability. While conducting dynamic simulations, sensitivity analysis is performed to assess the need for dynamic VAR sources. This study focuses on a reactive power compensation strategy to determine system voltage recovery performance by optimal flexible alternating current transmission system (FACTS) placement in a metropolitan region. The objective of this study is to determine the optimal installation of dynamic VAR sources while satisfying the requirements of voltage stability margin and transient voltage dip under a set of criteria. New insights are presented on the effect of FACTS controls on the reactive power compensation, which supports voltage recovery. The main features of the proposed method are (i) the development based on a load model for FIDVR, (ii) the use of sensitivity analysis of the network to the variations of the IM load, (iii) the establishment of the control function and compensation strategy to maintain the voltage of system within criteria limits, and (iv) the use of the sensitivity analysis based on branch parameterization for unsolvable cases. Case studies on the Korean power system validated the performance of the proposed strategy, showing that it effectively installed FACTS under contingency scenarios.

Suggested Citation

  • Yunhwan Lee & Hwachang Song, 2019. "A Reactive Power Compensation Strategy for Voltage Stability Challenges in the Korean Power System with Dynamic Loads," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:326-:d:196504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/2/326/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/2/326/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna Rita Di Fazio & Mario Russo & Sara Valeri & Michele De Santis, 2016. "Sensitivity-Based Model of Low Voltage Distribution Systems with Distributed Energy Resources," Energies, MDPI, vol. 9(10), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michał Gwóźdź, 2023. "The Application of Tunable Magnetic Devices in Electrical Power Systems with Adaptive Features," Energies, MDPI, vol. 16(17), pages 1-12, August.
    2. Naderipour, Amirreza & Abdul-Malek, Zulkurnain & Heidari Gandoman, Foad & Nowdeh, Saber Arabi & Shiran, Mohsen Aghazadeh & Hadidian Moghaddam, Mohammad Jafar & Davoodkhani, Iraj Faraji, 2020. "Optimal designing of static var compensator to improve voltage profile of power system using fuzzy logic control," Energy, Elsevier, vol. 192(C).
    3. Mir Sayed Shah Danish & Tomonobu Senjyu & Sayed Mir Shah Danish & Najib Rahman Sabory & Narayanan K & Paras Mandal, 2019. "A Recap of Voltage Stability Indices in the Past Three Decades," Energies, MDPI, vol. 12(8), pages 1-18, April.
    4. Markel Zubiaga & Alain Sanchez-Ruiz & Eneko Olea & Eneko Unamuno & Aitor Bilbao & Joseba Arza, 2020. "Power Capability Boundaries for an Inverter Providing Multiple Grid Support Services," Energies, MDPI, vol. 13(17), pages 1-14, August.
    5. Jibran Ali & Stefano Massucco & Federico Silvestro, 2019. "Aggregation Strategy for Reactive Power Compensation Techniques—Validation," Energies, MDPI, vol. 12(11), pages 1-13, May.
    6. Nomihla Wandile Ndlela & Innocent Ewean Davidson, 2022. "Network Coordination between High-Voltage DC and High-Voltage AC Transmission Systems Using Flexible AC Transmission System Controllers," Energies, MDPI, vol. 15(19), pages 1-15, October.
    7. Łukasz Ciepliński & Michał Gwóźdź & Rafał M. Wojciechowski, 2022. "Application of a Tuned Inductor in a DC Power Supply with an Active Compensation Function," Energies, MDPI, vol. 15(17), pages 1-15, August.
    8. Abdullahi Oboh Muhammed & Muhyaddin Rawa, 2020. "A Systematic PVQV-Curves Approach for Investigating the Impact of Solar Photovoltaic-Generator in Power System Using PowerWorld Simulator," Energies, MDPI, vol. 13(10), pages 1-21, May.
    9. Michał Gwóźdź, 2022. "The Application of Tuned Inductors in Electric Power Systems," Energies, MDPI, vol. 15(22), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamed Moazami Goodarzi & Mohammad Hosein Kazemi, 2017. "A Novel Optimal Control Method for Islanded Microgrids Based on Droop Control Using the ICA-GA Algorithm," Energies, MDPI, vol. 10(4), pages 1-17, April.
    2. Zhe Zhang & Hang Yang & Xianggen Yin & Jiexiang Han & Yong Wang & Guoyan Chen, 2018. "A Load-Shedding Model Based on Sensitivity Analysis in on-Line Power System Operation Risk Assessment," Energies, MDPI, vol. 11(4), pages 1-17, March.
    3. Chong Cao & Zhouquan Wu & Bo Chen, 2020. "Electric Vehicle–Grid Integration with Voltage Regulation in Radial Distribution Networks," Energies, MDPI, vol. 13(7), pages 1-18, April.
    4. Hongmei Li & Hantao Cui & Chunjie Li, 2019. "Distribution Network Power Loss Analysis Considering Uncertainties in Distributed Generations," Sustainability, MDPI, vol. 11(5), pages 1-17, March.
    5. Giuseppe Fusco & Mario Russo & Michele De Santis, 2021. "Decentralized Voltage Control in Active Distribution Systems: Features and Open Issues," Energies, MDPI, vol. 14(9), pages 1-31, April.
    6. Andrés Felipe Pérez Posada & Juan G. Villegas & Jesús M. López-Lezama, 2017. "A Scatter Search Heuristic for the Optimal Location, Sizing and Contract Pricing of Distributed Generation in Electric Distribution Systems," Energies, MDPI, vol. 10(10), pages 1-16, September.
    7. Anna Rita Di Fazio & Mario Russo & Michele De Santis, 2019. "Zoning Evaluation for Voltage Optimization in Distribution Networks with Distributed Energy Resources," Energies, MDPI, vol. 12(3), pages 1-28, January.
    8. Min-Rong Chen & Huan Wang & Guo-Qiang Zeng & Yu-Xing Dai & Da-Qiang Bi, 2018. "Optimal P-Q Control of Grid-Connected Inverters in a Microgrid Based on Adaptive Population Extremal Optimization," Energies, MDPI, vol. 11(8), pages 1-19, August.
    9. Mu-Gu Jeong & Young-Jin Kim & Seung-Il Moon & Pyeong-Ik Hwang, 2017. "Optimal Voltage Control Using an Equivalent Model of a Low-Voltage Network Accommodating Inverter-Interfaced Distributed Generators," Energies, MDPI, vol. 10(8), pages 1-19, August.
    10. Jiawei Chen & Shuaicheng Hou & Xiang Li, 2018. "Decentralized Circulating Currents Suppression for Paralleled Inverters in Microgrids Using Adaptive Virtual Inductances," Energies, MDPI, vol. 11(7), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:326-:d:196504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.