IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6108-d895325.html
   My bibliography  Save this article

Application of a Tuned Inductor in a DC Power Supply with an Active Compensation Function

Author

Listed:
  • Łukasz Ciepliński

    (Faculty of Control, Robotics and Electrical Engineering, Poznań University of Technology, Piotrowo 3A Street, 60-965 Poznań, Poland)

  • Michał Gwóźdź

    (Faculty of Control, Robotics and Electrical Engineering, Poznań University of Technology, Piotrowo 3A Street, 60-965 Poznań, Poland)

  • Rafał M. Wojciechowski

    (Faculty of Control, Robotics and Electrical Engineering, Poznań University of Technology, Piotrowo 3A Street, 60-965 Poznań, Poland)

Abstract

This work focuses on the use of a one-phase direct current (DC) power supply equipped with a shunt active filter feature, which enabled the possibility of compensation (minimisation) of reactive and distortion power, generated by a group of loads, that was connected to the same power grid node as the power supply. A tuned inductor, which was included at the input of the controlled current source (constituting the main part of the power supply) allowed for an improvement in the quality of the compensation process, compared to a device with a fixed inductive filter This resulted in a visible reduction of the nonlinear distortions of the grid current. The improvement was made possible by extending the frequency response of the current source, which allowed to increase the dynamics of the current changes at the input of the power supply. This solution represents a new approach to such power devices. This work describes the principle of operation of the proposed converter solution and presents selected test results for a laboratory model of an electric system with this device.

Suggested Citation

  • Łukasz Ciepliński & Michał Gwóźdź & Rafał M. Wojciechowski, 2022. "Application of a Tuned Inductor in a DC Power Supply with an Active Compensation Function," Energies, MDPI, vol. 15(17), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6108-:d:895325
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarah Saeed & Ramy Georgious & Jorge Garcia, 2020. "Modeling of Magnetic Elements Including Losses—Application to Variable Inductor," Energies, MDPI, vol. 13(8), pages 1-19, April.
    2. Yunhwan Lee & Hwachang Song, 2019. "A Reactive Power Compensation Strategy for Voltage Stability Challenges in the Korean Power System with Dynamic Loads," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michał Gwóźdź, 2023. "The Application of Tunable Magnetic Devices in Electrical Power Systems with Adaptive Features," Energies, MDPI, vol. 16(17), pages 1-12, August.
    2. Michał Gwóźdź, 2022. "The Application of Tuned Inductors in Electric Power Systems," Energies, MDPI, vol. 15(22), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michał Gwóźdź, 2022. "The Application of Tuned Inductors in Electric Power Systems," Energies, MDPI, vol. 15(22), pages 1-13, November.
    2. Miklós Kuczmann & Tamás Orosz, 2023. "Temperature-Dependent Ferromagnetic Loss Approximation of an Induction Machine Stator Core Material Based on Laboratory Test Measurements," Energies, MDPI, vol. 16(3), pages 1-17, January.
    3. Markel Zubiaga & Alain Sanchez-Ruiz & Eneko Olea & Eneko Unamuno & Aitor Bilbao & Joseba Arza, 2020. "Power Capability Boundaries for an Inverter Providing Multiple Grid Support Services," Energies, MDPI, vol. 13(17), pages 1-14, August.
    4. Guangming Xue & Hongbai Bai & Tuo Li & Zhiying Ren & Xingxing Liu & Chunhong Lu, 2022. "Numerical Solving Method for Jiles-Atherton Model and Influence Analysis of the Initial Magnetic Field on Hysteresis," Mathematics, MDPI, vol. 10(23), pages 1-16, November.
    5. Krzysztof Górecki & Kalina Detka, 2023. "SPICE-Aided Models of Magnetic Elements—A Critical Review," Energies, MDPI, vol. 16(18), pages 1-27, September.
    6. Daniele Scirè & Gianpaolo Vitale & Marco Ventimiglia & Giuseppe Lullo, 2021. "Non-Linear Inductors Characterization in Real Operating Conditions for Power Density Optimization in SMPS," Energies, MDPI, vol. 14(13), pages 1-19, June.
    7. Mir Sayed Shah Danish & Tomonobu Senjyu & Sayed Mir Shah Danish & Najib Rahman Sabory & Narayanan K & Paras Mandal, 2019. "A Recap of Voltage Stability Indices in the Past Three Decades," Energies, MDPI, vol. 12(8), pages 1-18, April.
    8. Nomihla Wandile Ndlela & Innocent Ewean Davidson, 2022. "Network Coordination between High-Voltage DC and High-Voltage AC Transmission Systems Using Flexible AC Transmission System Controllers," Energies, MDPI, vol. 15(19), pages 1-15, October.
    9. Dejana Herceg & Krzysztof Chwastek & Đorđe Herceg, 2020. "The Use of Hypergeometric Functions in Hysteresis Modeling," Energies, MDPI, vol. 13(24), pages 1-14, December.
    10. Michał Gwóźdź, 2023. "The Application of Tunable Magnetic Devices in Electrical Power Systems with Adaptive Features," Energies, MDPI, vol. 16(17), pages 1-12, August.
    11. Abdullahi Oboh Muhammed & Muhyaddin Rawa, 2020. "A Systematic PVQV-Curves Approach for Investigating the Impact of Solar Photovoltaic-Generator in Power System Using PowerWorld Simulator," Energies, MDPI, vol. 13(10), pages 1-21, May.
    12. Naderipour, Amirreza & Abdul-Malek, Zulkurnain & Heidari Gandoman, Foad & Nowdeh, Saber Arabi & Shiran, Mohsen Aghazadeh & Hadidian Moghaddam, Mohammad Jafar & Davoodkhani, Iraj Faraji, 2020. "Optimal designing of static var compensator to improve voltage profile of power system using fuzzy logic control," Energy, Elsevier, vol. 192(C).
    13. Jibran Ali & Stefano Massucco & Federico Silvestro, 2019. "Aggregation Strategy for Reactive Power Compensation Techniques—Validation," Energies, MDPI, vol. 12(11), pages 1-13, May.
    14. Fabio Corti & Alberto Reatti & Gabriele Maria Lozito & Ermanno Cardelli & Antonino Laudani, 2021. "Influence of Non-Linearity in Losses Estimation of Magnetic Components for DC-DC Converters," Energies, MDPI, vol. 14(20), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6108-:d:895325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.