IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p7137-d297455.html
   My bibliography  Save this article

Uniform Parallel Machine Scheduling with Dedicated Machines, Job Splitting and Setup Resources

Author

Listed:
  • Jun-Ho Lee

    (School of Business, Konkuk University, Seoul 05029, Korea)

  • Hoon Jang

    (College of Global Business, Korea University, Sejong 30019, Korea)

Abstract

We examine a uniform parallel machine scheduling problem with dedicated machines, job splitting, and limited setup resources for makespan minimization. In this problem, machines have different processing speeds, and each job can only be processed at several designated machines. A job can be split into multiple sections and those sections can be processed on multiple machines simultaneously. Sequence-independent setup times are assumed, and setup operations between jobs require setup operators that are limited. For the problem, we first develop a mathematical optimization model and for large-sized problems a constructive heuristic algorithm is proposed. Finally, we show that the algorithm developed is efficient and provides good solutions by experiments with various scenarios.

Suggested Citation

  • Jun-Ho Lee & Hoon Jang, 2019. "Uniform Parallel Machine Scheduling with Dedicated Machines, Job Splitting and Setup Resources," Sustainability, MDPI, vol. 11(24), pages 1-23, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7137-:d:297455
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/7137/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/7137/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kellerer, H. & Strusevich, V. A., 2003. "Scheduling parallel dedicated machines under a single non-shared resource," European Journal of Operational Research, Elsevier, vol. 147(2), pages 345-364, June.
    2. Dessouky, Maged M. & Dessouky, Mohamed I. & Verma, Sushil K., 1998. "Flowshop scheduling with identical jobs and uniform parallel machines," European Journal of Operational Research, Elsevier, vol. 109(3), pages 620-631, September.
    3. M.I. Dessouky & B.J. Lageweg & J.K. Lenstra & S.L. van de Velde, 1990. "Scheduling identical jobs on uniform parallel machines," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 44(3), pages 115-123, September.
    4. Paolo Serafini, 1996. "Scheduling Jobs on Several Machines with the Job Splitting Property," Operations Research, INFORMS, vol. 44(4), pages 617-628, August.
    5. H. W. Kuhn, 1955. "The Hungarian method for the assignment problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 83-97, March.
    6. Edis, Emrah B. & Oguz, Ceyda & Ozkarahan, Irem, 2013. "Parallel machine scheduling with additional resources: Notation, classification, models and solution methods," European Journal of Operational Research, Elsevier, vol. 230(3), pages 449-463.
    7. Mohammad Torkjazi & Nathan Huynh, 2019. "Effectiveness of Dynamic Insertion Scheduling Strategy for Demand-Responsive Paratransit Vehicles Using Agent-Based Simulation," Sustainability, MDPI, vol. 11(19), pages 1-12, September.
    8. Donatas Elvikis & Vincent T’kindt, 2014. "Two-agent scheduling on uniform parallel machines with min-max criteria," Annals of Operations Research, Springer, vol. 213(1), pages 79-94, February.
    9. Nait Tahar, Djamel & Yalaoui, Farouk & Chu, Chengbin & Amodeo, Lionel, 2006. "A linear programming approach for identical parallel machine scheduling with job splitting and sequence-dependent setup times," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 63-73, February.
    10. Mengzhi Ma & Houming Fan & Xiaodan Jiang & Zhenfeng Guo, 2019. "Truck Arrivals Scheduling with Vessel Dependent Time Windows to Reduce Carbon Emissions," Sustainability, MDPI, vol. 11(22), pages 1-26, November.
    11. Zhou, Shengchao & Liu, Ming & Chen, Huaping & Li, Xueping, 2016. "An effective discrete differential evolution algorithm for scheduling uniform parallel batch processing machines with non-identical capacities and arbitrary job sizes," International Journal of Production Economics, Elsevier, vol. 179(C), pages 1-11.
    12. Cheng, T. C. E. & Sin, C. C. S., 1990. "A state-of-the-art review of parallel-machine scheduling research," European Journal of Operational Research, Elsevier, vol. 47(3), pages 271-292, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed Alnahhal & Nikola Gjeldum & Bashir Salah, 2023. "Optimal Scheduling of Rainwater Collection Vehicles: Mixed Integer Programming and Genetic Algorithms," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    2. Roman Buil & Jesica de Armas & Daniel Riera & Sandra Orozco, 2021. "Optimization of the Real-Time Response to Roadside Incidents through Heuristic and Linear Programming," Mathematics, MDPI, vol. 9(16), pages 1-20, August.
    3. Rujapa Nanthapodej & Cheng-Hsiang Liu & Krisanarach Nitisiri & Sirorat Pattanapairoj, 2021. "Hybrid Differential Evolution Algorithm and Adaptive Large Neighborhood Search to Solve Parallel Machine Scheduling to Minimize Energy Consumption in Consideration of Machine-Load Balance Problems," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    4. Donghun Lee & Hyeongwon Kang & Dongjin Lee & Jeonwoo Lee & Kwanho Kim, 2023. "Deep Reinforcement Learning-Based Scheduler on Parallel Dedicated Machine Scheduling Problem towards Minimizing Total Tardiness," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    5. Tao Dai & Xiangqi Fan, 2021. "Multi-Stove Scheduling for Sustainable On-Demand Food Delivery," Sustainability, MDPI, vol. 13(23), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun-Ho Lee & Hyun-Jung Kim, 2021. "A heuristic algorithm for identical parallel machine scheduling: splitting jobs, sequence-dependent setup times, and limited setup operators," Flexible Services and Manufacturing Journal, Springer, vol. 33(4), pages 992-1026, December.
    2. Fleszar, Krzysztof & Hindi, Khalil S., 2018. "Algorithms for the unrelated parallel machine scheduling problem with a resource constraint," European Journal of Operational Research, Elsevier, vol. 271(3), pages 839-848.
    3. Hesham K. Alfares, 2022. "Plant shutdown maintenance workforce team assignment and job scheduling," Journal of Scheduling, Springer, vol. 25(3), pages 321-338, June.
    4. Geurtsen, M. & Didden, Jeroen B.H.C. & Adan, J. & Atan, Z. & Adan, I., 2023. "Production, maintenance and resource scheduling: A review," European Journal of Operational Research, Elsevier, vol. 305(2), pages 501-529.
    5. Qiulan Zhao & Jinjiang Yuan, 2020. "Bicriteria scheduling of equal length jobs on uniform parallel machines," Journal of Combinatorial Optimization, Springer, vol. 39(3), pages 637-661, April.
    6. Edis, Emrah B. & Oguz, Ceyda & Ozkarahan, Irem, 2013. "Parallel machine scheduling with additional resources: Notation, classification, models and solution methods," European Journal of Operational Research, Elsevier, vol. 230(3), pages 449-463.
    7. Fanjul-Peyro, Luis & Perea, Federico & Ruiz, Rubén, 2017. "Models and matheuristics for the unrelated parallel machine scheduling problem with additional resources," European Journal of Operational Research, Elsevier, vol. 260(2), pages 482-493.
    8. Zhang, Zhe & Song, Xiaoling & Huang, Huijung & Zhou, Xiaoyang & Yin, Yong, 2022. "Logic-based Benders decomposition method for the seru scheduling problem with sequence-dependent setup time and DeJong’s learning effect," European Journal of Operational Research, Elsevier, vol. 297(3), pages 866-877.
    9. Fang, Kan & Wang, Shijin & Pinedo, Michael L. & Chen, Lin & Chu, Feng, 2021. "A combinatorial Benders decomposition algorithm for parallel machine scheduling with working-time restrictions," European Journal of Operational Research, Elsevier, vol. 291(1), pages 128-146.
    10. Chen, Rubing & Geng, Zhichao & Lu, Lingfa & Yuan, Jinjiang & Zhang, Yuan, 2022. "Pareto-scheduling of two competing agents with their own equal processing times," European Journal of Operational Research, Elsevier, vol. 301(2), pages 414-431.
    11. W L Pearn & S H Chung & M H Yang & Y H Chen, 2004. "Algorithms for the wafer probing scheduling problem with sequence-dependent set-up time and due date restrictions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(11), pages 1194-1207, November.
    12. Dessouky, Maged M. & Dessouky, Mohamed I. & Verma, Sushil K., 1998. "Flowshop scheduling with identical jobs and uniform parallel machines," European Journal of Operational Research, Elsevier, vol. 109(3), pages 620-631, September.
    13. Mok, P.Y. & Kwong, C.K. & Wong, W.K., 2007. "Optimisation of fault-tolerant fabric-cutting schedules using genetic algorithms and fuzzy set theory," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1876-1893, March.
    14. Chang, Zhiqi & Ding, Jian-Ya & Song, Shiji, 2019. "Distributionally robust scheduling on parallel machines under moment uncertainty," European Journal of Operational Research, Elsevier, vol. 272(3), pages 832-846.
    15. Yalaoui, F. & Chu, C., 2006. "New exact method to solve the Pm/rj/[summation operator]Cj schedule problem," International Journal of Production Economics, Elsevier, vol. 100(1), pages 168-179, March.
    16. Weiqiang Shen & Chuanlin Zhang & Xiaona Zhang & Jinglun Shi, 2019. "A fully distributed deployment algorithm for underwater strong k-barrier coverage using mobile sensors," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    17. Bo Cowgill & Jonathan M. V. Davis & B. Pablo Montagnes & Patryk Perkowski, 2024. "Stable Matching on the Job? Theory and Evidence on Internal Talent Markets," CESifo Working Paper Series 11120, CESifo.
    18. Lin, Hung-Tso & Liao, Ching-Jong, 2003. "A case study in a two-stage hybrid flow shop with setup time and dedicated machines," International Journal of Production Economics, Elsevier, vol. 86(2), pages 133-143, November.
    19. Azab, Ahmed & Morita, Hiroshi, 2022. "Coordinating truck appointments with container relocations and retrievals in container terminals under partial appointments information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    20. Biber Nurit & Mor Baruch & Schlissel Yitzhak & Shapira Dana, 2023. "Lot scheduling involving completion time problems on identical parallel machines," Operational Research, Springer, vol. 23(1), pages 1-29, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7137-:d:297455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.