IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p6896-d294100.html
   My bibliography  Save this article

Modified iButtons: A Low-Cost Instrument to Measure the Albedo of Landscape Elements

Author

Listed:
  • Jane Loveday

    (School of Design and the Built Environment, Curtin University Sustainability Policy Institute, Curtin University, Bentley 6102, Australia)

  • Grant K. Loveday

    (Independent Researcher, Booragoon 6154, Australia)

  • Joshua J. Byrne

    (School of Design and the Built Environment, Curtin University Sustainability Policy Institute, Curtin University, Bentley 6102, Australia)

  • Boon-lay Ong

    (School of Design and the Built Environment, Curtin University, Bentley 6102, Australia)

  • Gregory M. Morrison

    (School of Design and the Built Environment, Curtin University Sustainability Policy Institute, Curtin University, Bentley 6102, Australia)

Abstract

Urban infill can lead to increased urban air and surface temperatures. Landscape elements (LEs) which can maintain cooler surface temperatures also reduce night-time re-emission of heat; however, reflected solar radiation (albedo) from these LEs during the day potentially increases heat loads on nearby objects, pedestrians or buildings. Albedo is traditionally measured using two pyranometers, however their expense can be prohibitive for researchers and landscape professionals. A low cost albedometer was developed consisting of a pair of black- and white-painted temperature sensors (Thermochron ® iButtons). The albedos of 14 LEs typically found in suburban landscapes in Perth, Western Australia, were measured. Three approaches were tested: The first two used white-painted polystyrene (WPP) as a reference (one taking view factors into account, and one ignoring the albedo of the background material), whilst the third approach used upwards-facing iButtons as a reference, similar to conventional pyranometer methods. The WPP approaches controlled for weather effects, providing a consistent albedo over a longer daytime period than recommended by the standard ASTM-E1918-16. Measured albedos were similar to literature values. This instrument could be used as an alternative to more expensive pyranometers and could assist landscape professionals to design for, and manage, urban heat.

Suggested Citation

  • Jane Loveday & Grant K. Loveday & Joshua J. Byrne & Boon-lay Ong & Gregory M. Morrison, 2019. "Modified iButtons: A Low-Cost Instrument to Measure the Albedo of Landscape Elements," Sustainability, MDPI, vol. 11(24), pages 1-23, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:6896-:d:294100
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/6896/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/6896/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meng Huang & Peng Cui & Xin He, 2018. "Study of the Cooling Effects of Urban Green Space in Harbin in Terms of Reducing the Heat Island Effect," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    2. Jan K. Kazak, 2018. "The Use of a Decision Support System for Sustainable Urbanization and Thermal Comfort in Adaptation to Climate Change Actions—The Case of the Wrocław Larger Urban Zone (Poland)," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    3. Hu, Mingke & Zhao, Bin & Ao, Xianze & Feng, Junsheng & Cao, Jingyu & Su, Yuehong & Pei, Gang, 2019. "Experimental study on a hybrid photo-thermal and radiative cooling collector using black acrylic paint as the panel coating," Renewable Energy, Elsevier, vol. 139(C), pages 1217-1226.
    4. Jane Loveday & Grant Loveday & Joshua J. Byrne & Boon-lay Ong & Gregory M. Morrison, 2019. "Seasonal and Diurnal Surface Temperatures of Urban Landscape Elements," Sustainability, MDPI, vol. 11(19), pages 1-27, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tommaso Barbieri & Francesca Despini & Sergio Teggi, 2018. "A Multi-Temporal Analyses of Land Surface Temperature Using Landsat-8 Data and Open Source Software: The Case Study of Modena, Italy," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    2. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Shuangqing Sheng & Wei Song & Hua Lian & Lei Ning, 2022. "Review of Urban Land Management Based on Bibliometrics," Land, MDPI, vol. 11(11), pages 1-25, November.
    4. Bu, Fan & Yan, Da & Tan, Gang & Sun, Hongsan & An, Jingjing, 2023. "Acceleration algorithms for long-wavelength radiation integral in the annual simulation of radiative cooling in buildings," Renewable Energy, Elsevier, vol. 202(C), pages 255-269.
    5. Katarzyna Kocur-Bera & Anna Lyjak, 2021. "Analysis of Changes in Agricultural Use of Land After Poland’s Accession to the EU," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 517-533.
    6. Cegielska, Katarzyna & Noszczyk, Tomasz & Kukulska, Anita & Szylar, Marta & Hernik, Józef & Dixon-Gough, Robert & Jombach, Sándor & Valánszki, István & Filepné Kovács, Krisztina, 2018. "Land use and land cover changes in post-socialist countries: Some observations from Hungary and Poland," Land Use Policy, Elsevier, vol. 78(C), pages 1-18.
    7. Noszczyk, Tomasz & Gorzelany, Julia & Kukulska-Kozieł, Anita & Hernik, Józef, 2022. "The impact of the COVID-19 pandemic on the importance of urban green spaces to the public," Land Use Policy, Elsevier, vol. 113(C).
    8. Foryś Iwona & Kazak Jan, 2019. "“Absorption” or “Carrying Capacity” of Areas – Assessment Methods on the Example of Detached Housing Real Estate," Real Estate Management and Valuation, Sciendo, vol. 27(2), pages 5-19, June.
    9. Kazak Jan K. & Simeunović Nataša & Hendricks Andreas, 2019. "Hidden Public Value Identification of Real Estate Management Decisions," Real Estate Management and Valuation, Sciendo, vol. 27(4), pages 96-104, December.
    10. Fei Li & Tan Yigitcanlar & Madhav Nepal & Kien Nguyen Thanh & Fatih Dur, 2022. "Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review," Energies, MDPI, vol. 15(19), pages 1-34, September.
    11. Yingxue Rao & Yi Zhong & Qingsong He & Jingyi Dai, 2022. "Assessing the Equity of Accessibility to Urban Green Space: A Study of 254 Cities in China," IJERPH, MDPI, vol. 19(8), pages 1-20, April.
    12. Liu, Dongya & Zheng, Xinqi & Wang, Hongbin, 2020. "Land-use Simulation and Decision-Support system (LandSDS): Seamlessly integrating system dynamics, agent-based model, and cellular automata," Ecological Modelling, Elsevier, vol. 417(C).
    13. Wenbin Luo & Mingming Su, 2018. "A Spatial-Temporal Analysis of Urban Parkland Expansion in China and Practical Implications to Enhance Urban Sustainability," Sustainability, MDPI, vol. 11(1), pages 1-14, December.
    14. William Solecki & Cynthia Rosenzweig, 2020. "Indicators and monitoring systems for urban climate resiliency," Climatic Change, Springer, vol. 163(4), pages 1815-1837, December.
    15. Akvilė Feiferytė-Skirienė & Lina Draudvilienė & Žaneta Stasiškienė & Sergej Sosunkevič & Kastytis Pamakštys & Laura Daniusevičiūtė-Brazaitė & Inga Gurauskienė, 2022. "Co-Creation Hub Is the First Step for the Successful Creation of a Unified Urban Ecosystem-Kaunas City Example," IJERPH, MDPI, vol. 19(5), pages 1-12, February.
    16. Hu, Mingke & Zhao, Bin & Suhendri, S. & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Yang, Ronggui & Su, Yuehong & Pei, Gang, 2022. "Experimental study on a hybrid solar photothermic and radiative cooling collector equipped with a rotatable absorber/emitter plate," Applied Energy, Elsevier, vol. 306(PB).
    17. Manjula Ranagalage & Ronald C. Estoque & Hepi H. Handayani & Xinmin Zhang & Takehiro Morimoto & Takeo Tadono & Yuji Murayama, 2018. "Relation between Urban Volume and Land Surface Temperature: A Comparative Study of Planned and Traditional Cities in Japan," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    18. Hu, Mingke & Zhao, Bin & Suhendri, & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2022. "Extending the operation of a solar air collector to night-time by integrating radiative sky cooling: A comparative experimental study," Energy, Elsevier, vol. 251(C).
    19. Seo, Junyong & Choi, Minwoo & Yoon, Siwon & Lee, Bong Jae, 2023. "Climate-dependent optimization of radiative cooling structures for year-round cold energy harvesting," Renewable Energy, Elsevier, vol. 217(C).
    20. Yujiro Hirano & Tomohiko Ihara & Kei Gomi & Tsuyoshi Fujita, 2019. "Simulation-Based Evaluation of the Effect of Green Roofs in Office Building Districts on Mitigating the Urban Heat Island Effect and Reducing CO 2 Emissions," Sustainability, MDPI, vol. 11(7), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:6896-:d:294100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.