IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i7p2055-d220587.html
   My bibliography  Save this article

Simulation-Based Evaluation of the Effect of Green Roofs in Office Building Districts on Mitigating the Urban Heat Island Effect and Reducing CO 2 Emissions

Author

Listed:
  • Yujiro Hirano

    (Fukushima Branch, National Institute for Environmental Studies, Fukushima Environmental Creation Centre, 10-2 Fukasaku, Miharu Town, Tamura District, Fukushima 963-7700, Japan)

  • Tomohiko Ihara

    (Department of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8563, Japan)

  • Kei Gomi

    (Fukushima Branch, National Institute for Environmental Studies, Fukushima Environmental Creation Centre, 10-2 Fukasaku, Miharu Town, Tamura District, Fukushima 963-7700, Japan)

  • Tsuyoshi Fujita

    (Center for Social and Environmental Systems Research, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki 305-8506, Japan)

Abstract

This study focused on the effects of green roofs in office building districts. The purpose of this study was to evaluate the effectiveness of green roofs in the reduction of the urban heat island (UHI) effect and CO 2 emissions. These effects consider decreased energy consumption for space cooling, and the amount of water needed for evapotranspiration on the green roofs. A coupled urban canopy/building energy model (CM-BEM) was utilized to simulate the effectiveness of green roofs. The amount of water needed for evapotranspiration was calculated by using latent heat flux, which was derived from the results of roof surface heat balance calculations. The effect of green roofs on CO 2 emissions was determined based on their effectiveness to reduce the energy demand for space cooling, calculated by air-conditioning load simulation. We calculated the CO 2 emissions from powering the pumps and the use of tap water, when the necessary amount of water was supplied by watering. Finally, the relationships between amount of water, UHI mitigation, and CO 2 emissions were determined.

Suggested Citation

  • Yujiro Hirano & Tomohiko Ihara & Kei Gomi & Tsuyoshi Fujita, 2019. "Simulation-Based Evaluation of the Effect of Green Roofs in Office Building Districts on Mitigating the Urban Heat Island Effect and Reducing CO 2 Emissions," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2055-:d:220587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/7/2055/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/7/2055/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan K. Kazak, 2018. "The Use of a Decision Support System for Sustainable Urbanization and Thermal Comfort in Adaptation to Climate Change Actions—The Case of the Wrocław Larger Urban Zone (Poland)," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    2. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    3. Kikegawa, Yukihiro & Genchi, Yutaka & Kondo, Hiroaki & Hanaki, Keisuke, 2006. "Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building's energy-consumption for air-conditioning," Applied Energy, Elsevier, vol. 83(6), pages 649-668, June.
    4. Dasaraden Mauree & Silvia Coccolo & Amarasinghage Tharindu Dasun Perera & Vahid Nik & Jean-Louis Scartezzini & Emanuele Naboni, 2018. "A New Framework to Evaluate Urban Design Using Urban Microclimatic Modeling in Future Climatic Conditions," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    5. Kikegawa, Yukihiro & Genchi, Yutaka & Yoshikado, Hiroshi & Kondo, Hiroaki, 2003. "Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings' energy-demands," Applied Energy, Elsevier, vol. 76(4), pages 449-466, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia Sergeevna Shushunova & Elena Anatolyevna Korol & Nikolai Ivanovich Vatin, 2021. "Modular Green Roofs for the Sustainability of the Built Environment: The Installation Process," Sustainability, MDPI, vol. 13(24), pages 1-11, December.
    2. Mansoureh Gholami & Alberto Barbaresi & Patrizia Tassinari & Marco Bovo & Daniele Torreggiani, 2020. "A Comparison of Energy and Thermal Performance of Rooftop Greenhouses and Green Roofs in Mediterranean Climate: A Hygrothermal Assessment in WUFI," Energies, MDPI, vol. 13(8), pages 1-15, April.
    3. Sri Yuliani & Gagoek Hardiman & Erni Setyowati, 2020. "Green-Roof: The Role of Community in the Substitution of Green-Space toward Sustainable Development," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    4. Silvia Croce & Elisa D’Agnolo & Mauro Caini & Rossana Paparella, 2021. "The Use of Cool Pavements for the Regeneration of Industrial Districts," Sustainability, MDPI, vol. 13(11), pages 1-24, June.
    5. Elena Giacomello & Jacopo Gaspari, 2021. "Hydrologic Performance of an Extensive Green Roof under Intense Rain Events: Results from a Rain-Chamber Simulation," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    6. Sushobhan Sen & Jeffery Roesler & Benjamin Ruddell & Ariane Middel, 2019. "Cool Pavement Strategies for Urban Heat Island Mitigation in Suburban Phoenix, Arizona," Sustainability, MDPI, vol. 11(16), pages 1-21, August.
    7. Mitali Yeshwant Joshi & Jacques Teller, 2021. "Urban Integration of Green Roofs: Current Challenges and Perspectives," Sustainability, MDPI, vol. 13(22), pages 1-33, November.
    8. Ángel Pitarch & María José Ruá & Lucía Reig & Inés Arín, 2020. "Contribution of Roof Refurbishment to Urban Sustainability," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    9. Peng Ren & Xinxin Zhang & Haoyan Liang & Qinglin Meng, 2019. "Assessing the Impact of Land Cover Changes on Surface Urban Heat Islands with High-Spatial-Resolution Imagery on a Local Scale: Workflow and Case Study," Sustainability, MDPI, vol. 11(19), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kong, Fanhua & Sun, Changfeng & Liu, Fengfeng & Yin, Haiwei & Jiang, Fei & Pu, Yingxia & Cavan, Gina & Skelhorn, Cynthia & Middel, Ariane & Dronova, Iryna, 2016. "Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer," Applied Energy, Elsevier, vol. 183(C), pages 1428-1440.
    2. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    3. Gago, E.J. & Roldan, J. & Pacheco-Torres, R. & Ordóñez, J., 2013. "The city and urban heat islands: A review of strategies to mitigate adverse effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 749-758.
    4. Radhi, Hassan & Sharples, Stephen, 2013. "Quantifying the domestic electricity consumption for air-conditioning due to urban heat islands in hot arid regions," Applied Energy, Elsevier, vol. 112(C), pages 371-380.
    5. Néstor Santillán-Soto & O. Rafael García-Cueto & Alejandro A. Lambert-Arista & Sara Ojeda-Benítez & Samantha E. Cruz-Sotelo, 2019. "Comparative Analysis of Two Urban Microclimates: Energy Consumption and Greenhouse Gas Emissions," Sustainability, MDPI, vol. 11(7), pages 1-11, April.
    6. Duan, Shuangping & Luo, Zhiwen & Yang, Xinyan & Li, Yuguo, 2019. "The impact of building operations on urban heat/cool islands under urban densification: A comparison between naturally-ventilated and air-conditioned buildings," Applied Energy, Elsevier, vol. 235(C), pages 129-138.
    7. Dong-Hyeon Kim & Byeong-Il Ahn & Eui-Gyeong Kim, 2016. "Metropolitan Residents’ Preferences and Willingness to Pay for a Life Zone Forest for Mitigating Heat Island Effects during Summer Season in Korea," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    8. Tremeac, Brice & Bousquet, Pierre & de Munck, Cecile & Pigeon, Gregoire & Masson, Valery & Marchadier, Colette & Merchat, Michele & Poeuf, Pierre & Meunier, Francis, 2012. "Influence of air conditioning management on heat island in Paris air street temperatures," Applied Energy, Elsevier, vol. 95(C), pages 102-110.
    9. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    10. Yingbao Yang & Xize Zhang & Xi Lu & Jia Hu & Xin Pan & Qin Zhu & Weizhong Su, 2017. "Effects of Building Design Elements on Residential Thermal Environment," Sustainability, MDPI, vol. 10(1), pages 1-15, December.
    11. Kikegawa, Yukihiro & Nakajima, Kazusa & Takane, Yuya & Ohashi, Yukitaka & Ihara, Tomohiko, 2022. "A quantification of classic but unquantified positive feedback effects in the urban-building-energy-climate system," Applied Energy, Elsevier, vol. 307(C).
    12. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    13. Zinzi, Michele & Carnielo, Emiliano & Mattoni, Benedetta, 2018. "On the relation between urban climate and energy performance of buildings. A three-years experience in Rome, Italy," Applied Energy, Elsevier, vol. 221(C), pages 148-160.
    14. Shuangqing Sheng & Wei Song & Hua Lian & Lei Ning, 2022. "Review of Urban Land Management Based on Bibliometrics," Land, MDPI, vol. 11(11), pages 1-25, November.
    15. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    16. Katarzyna Kocur-Bera & Anna Lyjak, 2021. "Analysis of Changes in Agricultural Use of Land After Poland’s Accession to the EU," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 517-533.
    17. Tingzhen Ming & Shengnan Lian & Yongjia Wu & Tianhao Shi & Chong Peng & Yueping Fang & Renaud de Richter & Nyuk Hien Wong, 2021. "Numerical Investigation on the Urban Heat Island Effect by Using a Porous Media Model," Energies, MDPI, vol. 14(15), pages 1-23, August.
    18. Angeles Campos-Osorio & Néstor Santillán-Soto & O. Rafael García-Cueto & Alejandro A. Lambert-Arista & Gonzalo Bojórquez-Morales, 2020. "Energy and Environmental Comparison between a Concrete Wall with and without a Living Green Wall: A Case Study in Mexicali, Mexico," Sustainability, MDPI, vol. 12(13), pages 1-10, June.
    19. Tayyebi, Amin & Shafizadeh-Moghadam, Hossein & Tayyebi, Amir H., 2018. "Analyzing long-term spatio-temporal patterns of land surface temperature in response to rapid urbanization in the mega-city of Tehran," Land Use Policy, Elsevier, vol. 71(C), pages 459-469.
    20. Cegielska, Katarzyna & Noszczyk, Tomasz & Kukulska, Anita & Szylar, Marta & Hernik, Józef & Dixon-Gough, Robert & Jombach, Sándor & Valánszki, István & Filepné Kovács, Krisztina, 2018. "Land use and land cover changes in post-socialist countries: Some observations from Hungary and Poland," Land Use Policy, Elsevier, vol. 78(C), pages 1-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2055-:d:220587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.