IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i23p6866-d293524.html
   My bibliography  Save this article

An Environmental Impact Calculator for 24-h Diet Recalls

Author

Listed:
  • Thomas Bryan

    (Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, WI 53706, USA)

  • Andrea Hicks

    (Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA)

  • Bruce Barrett

    (Department of Family Medicine and Community Health, University of Wisconsin-Madison, Madison, WI 53706, USA)

  • Catherine Middlecamp

    (Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, WI 53706, USA)

Abstract

The production of food is associated with significant environmental impact. In this paper, we describe the first assessment of the environmental impact of food consumption in the United States using individually reported dietary intake data from a nationally representative sample. Using individual-level dietary intake data from the National Health and Nutrition Examination Survey (NHANES) and applying median environmental impact factors compiled by Poore and Nemecek (2018), we estimate that the daily diet that a non-institutionalized U.S. civilian reports results in a mean of 3.92 m 2 (95% CI: 3.51–4.34) of land used, 2.26 kg (95% CI: 2.09–2.42)of CO 2 e emitted, and 159 L (95% CI: 150–168) of freshwater withdrawn. The scope of all impacts is agricultural; transportation, storage, and preparation were not included. These results suggest that the calculator is ready for further development. This calculator can be used to estimate the environmental impact of individual diets in the 5100 studies (as of November 2018) registered with the Automated Self-Administered 24-h Dietary Assessment Tool, in addition to the last two decades of the nationally representative NHANES research.

Suggested Citation

  • Thomas Bryan & Andrea Hicks & Bruce Barrett & Catherine Middlecamp, 2019. "An Environmental Impact Calculator for 24-h Diet Recalls," Sustainability, MDPI, vol. 11(23), pages 1-8, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6866-:d:293524
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/23/6866/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/23/6866/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shewmake, Sharon & Okrent, Abigail & Thabrew, Lanka & Vandenbergh, Michael, 2015. "Predicting consumer demand responses to carbon labels," Ecological Economics, Elsevier, vol. 119(C), pages 168-180.
    2. Nijdam, Durk & Rood, Trudy & Westhoek, Henk, 2012. "The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes," Food Policy, Elsevier, vol. 37(6), pages 760-770.
    3. Berners-Lee, M. & Hoolohan, C. & Cammack, H. & Hewitt, C.N., 2012. "The relative greenhouse gas impacts of realistic dietary choices," Energy Policy, Elsevier, vol. 43(C), pages 184-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katerina S. Stylianou & Emily McDonald & Victor L. Fulgoni III & Olivier Jolliet, 2020. "Standardized Recipes and Their Influence on the Environmental Impact Assessment of Mixed Dishes: A Case Study on Pizza," Sustainability, MDPI, vol. 12(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morena Bruno & Marianne Thomsen & Federico Maria Pulselli & Nicoletta Patrizi & Michele Marini & Dario Caro, 2019. "The carbon footprint of Danish diets," Climatic Change, Springer, vol. 156(4), pages 489-507, October.
    2. Peter Scarborough & Paul Appleby & Anja Mizdrak & Adam Briggs & Ruth Travis & Kathryn Bradbury & Timothy Key, 2014. "Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK," Climatic Change, Springer, vol. 125(2), pages 179-192, July.
    3. Jennifer A. Jay & Raffaella D’Auria & J. Cully Nordby & David Andy Rice & David A. Cleveland & Anthony Friscia & Sophie Kissinger & Marc Levis & Hannah Malan & Deepak Rajagopal & Joel R. Reynolds & We, 2019. "Reduction of the carbon footprint of college freshman diets after a food-based environmental science course," Climatic Change, Springer, vol. 154(3), pages 547-564, June.
    4. Brunner, Florentine & Kurz, Verena & Bryngelsson, David & Hedenus, Fredrik, 2018. "Carbon Label at a University Restaurant – Label Implementation and Evaluation," Ecological Economics, Elsevier, vol. 146(C), pages 658-667.
    5. Goldstein, Benjamin & Hansen, Steffen Foss & Gjerris, Mickey & Laurent, Alexis & Birkved, Morten, 2016. "Ethical aspects of life cycle assessments of diets," Food Policy, Elsevier, vol. 59(C), pages 139-151.
    6. Johanna Ruett & Lena Hennes & Jens Teubler & Boris Braun, 2022. "How Compatible Are Western European Dietary Patterns to Climate Targets? Accounting for Uncertainty of Life Cycle Assessments by Applying a Probabilistic Approach," Sustainability, MDPI, vol. 14(21), pages 1-21, November.
    7. Nikolett Nemeth & Ildiko Rudnak & Prespa Ymeri & Csaba Fogarassy, 2019. "The Role of Cultural Factors in Sustainable Food Consumption—An Investigation of the Consumption Habits among International Students in Hungary," Sustainability, MDPI, vol. 11(11), pages 1-27, May.
    8. Westhoek, Henk & Ingram, John & van Berkum, Siemen & Hajer, Maarten, 2015. "The European food system and natural resources: Impacts and Options," 148th Seminar, November 30-December 1, 2015, The Hague, The Netherlands 229279, European Association of Agricultural Economists.
    9. Schleich, Joachim & Alsheimer, Sven, 2024. "The relationship between willingness to pay and carbon footprint knowledge: Are individuals willing to pay more to offset their carbon footprint if they learn about its size and distance to the 1.5 °C," Ecological Economics, Elsevier, vol. 219(C).
    10. Adam A. Prag & Christian B. Henriksen, 2020. "Transition from Animal-Based to Plant-Based Food Production to Reduce Greenhouse Gas Emissions from Agriculture—The Case of Denmark," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    11. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2014. "Who rebounds most? Estimating direct and indirect rebound effects for different UK socioeconomic groups," Ecological Economics, Elsevier, vol. 106(C), pages 12-32.
    12. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    13. Huangling Gu & Yan Liu & Hao Xia & Zilong Li & Liyuan Huang & Yanjia Zeng, 2023. "Temporal and Spatial Differences in CO 2 Equivalent Emissions and Carbon Compensation Caused by Land Use Changes and Industrial Development in Hunan Province," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    14. Patricia Eustachio Colombo & Emma Patterson & Liselotte Schäfer Elinder & Anna Karin Lindroos & Ulf Sonesson & Nicole Darmon & Alexandr Parlesak, 2019. "Optimizing School Food Supply: Integrating Environmental, Health, Economic, and Cultural Dimensions of Diet Sustainability with Linear Programming," IJERPH, MDPI, vol. 16(17), pages 1-18, August.
    15. Linnea Laestadius & Roni Neff & Colleen Barry & Shannon Frattaroli, 2013. "Meat consumption and climate change: the role of non-governmental organizations," Climatic Change, Springer, vol. 120(1), pages 25-38, September.
    16. Helen Harwatt & Joan Sabaté & Gidon Eshel & Sam Soret & William Ripple, 2017. "Substituting beans for beef as a contribution toward US climate change targets," Climatic Change, Springer, vol. 143(1), pages 261-270, July.
    17. Dominic Lemken & Mandy Knigge & Stephan Meyerding & Achim Spiller, 2017. "The Value of Environmental and Health Claims on New Legume Products: A Non-Hypothetical Online Auction," Sustainability, MDPI, vol. 9(8), pages 1-18, July.
    18. Thorn, Alexandra M. & Baker, Michael J. & Peters, Christian J., 2021. "Estimating biological capacity for grass-finished ruminant meat production in New England and New York," Agricultural Systems, Elsevier, vol. 189(C).
    19. Chantal Le Mouël & Anna Birgit Milford & Benjamin L. Bodirsky & Susanne Rolinski, 2019. "Drivers of meat consumption," Post-Print hal-02175593, HAL.
    20. Carlsson, Fredrik & Kataria, Mitesh & Lampi, Elina, 2022. "How much does it take? Willingness to switch to meat substitutes," Ecological Economics, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6866-:d:293524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.