IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i23p6802-d292589.html
   My bibliography  Save this article

ANN for Assessment of Energy Consumption of 4 kW PV Modules over a Year Considering the Impacts of Temperature and Irradiance

Author

Listed:
  • Adel Alblawi

    (Mechanical Engineering Department, College of Engineering, Shaqra University, Dawadmi, Ar Riyadh P.O. 11911, Saudi Arabia)

  • M. H. Elkholy

    (Electrical Power & Machines Department, Faculty of Engineering, Zagazig University, Zagazig P.O. 44519, Egypt)

  • M. Talaat

    (Electrical Power & Machines Department, Faculty of Engineering, Zagazig University, Zagazig P.O. 44519, Egypt
    Electrical Engineering Department, College of Engineering, Shaqra University, Dawadmi, Ar Riyadh P.O. 11911, Saudi Arabia)

Abstract

Solar energy is considered the greatest source of renewable energy. In this paper, a case study was performed for a single-axis solar tracking model to analyze the performance of the solar panels in an office building under varying ambient temperatures and solar radiation over the course of one year (2018). This case study was performed in an office building at the College of Engineering at Shaqra University, Dawadmi, Saudi Arabia. The office building was supplied with electricity for a full year by the designed solar energy system. The study was conducted across the four seasons of the studied year to analyze the performance of a group of solar panels with the total capacity of a 4 kW DC system. The solar radiation, temperature, output DC power, and consumed AC power of the system were measured using wireless sensor networks (for temperature and irradiance measurement) and a signal acquisition system for each hour throughout the whole day. A single-axis solar tracker was designed for each panel (16 solar panels were used) using two light-dependent resistors (LDR) as detecting light sensors, one servo motor, an Arduino Uno, and a 250 W solar panel installed with an array tilt angle of 21°. Finally, an artificial neural network (ANN) was utilized to estimate energy consumption, according to the dataset of AC load power consumption for each month and the measurement values of the temperature and irradiance. The relative error between the measured and estimated energy was calculated in order to assess the accuracy of the proposed ANN model and update the weights of the training network. The maximum absolute relative error of the proposed system did not exceed 2 × 10 −4 . After assessment of the proposed model, the ANN results showed that the average energy in the region of the case study from a 4 kW DC solar system for one year, considering environmental impact, was around 8431 kWh/year.

Suggested Citation

  • Adel Alblawi & M. H. Elkholy & M. Talaat, 2019. "ANN for Assessment of Energy Consumption of 4 kW PV Modules over a Year Considering the Impacts of Temperature and Irradiance," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6802-:d:292589
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/23/6802/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/23/6802/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hocaoglu, Fatih Onur & Serttas, Fatih, 2017. "A novel hybrid (Mycielski-Markov) model for hourly solar radiation forecasting," Renewable Energy, Elsevier, vol. 108(C), pages 635-643.
    2. Peng, Lele & Zheng, Shubin & Chai, Xiaodong & Li, Liming, 2018. "A novel tangent error maximum power point tracking algorithm for photovoltaic system under fast multi-changing solar irradiances," Applied Energy, Elsevier, vol. 210(C), pages 303-316.
    3. Wahiba Yaïci & Michela Longo & Evgueniy Entchev & Federica Foiadelli, 2017. "Simulation Study on the Effect of Reduced Inputs of Artificial Neural Networks on the Predictive Performance of the Solar Energy System," Sustainability, MDPI, vol. 9(8), pages 1-14, August.
    4. Copper, J.K. & Sproul, A.B. & Jarnason, S., 2016. "Photovoltaic (PV) performance modelling in the absence of onsite measured plane of array irradiance (POA) and module temperature," Renewable Energy, Elsevier, vol. 86(C), pages 760-769.
    5. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    6. Amri, Fethi, 2019. "Renewable and non-renewable categories of energy consumption and trade: Do the development degree and the industrialization degree matter?," Energy, Elsevier, vol. 173(C), pages 374-383.
    7. Chen, Yulong & Zhao, Jincai & Lai, Zhizhu & Wang, Zheng & Xia, Haibin, 2019. "Exploring the effects of economic growth, and renewable and non-renewable energy consumption on China’s CO2 emissions: Evidence from a regional panel analysis," Renewable Energy, Elsevier, vol. 140(C), pages 341-353.
    8. Akarslan, Emre & Hocaoglu, Fatih Onur & Edizkan, Rifat, 2018. "Novel short term solar irradiance forecasting models," Renewable Energy, Elsevier, vol. 123(C), pages 58-66.
    9. Hassanean S. H. Jassim & Weizhuo Lu & Thomas Olofsson, 2017. "Predicting Energy Consumption and CO 2 Emissions of Excavators in Earthwork Operations: An Artificial Neural Network Model," Sustainability, MDPI, vol. 9(7), pages 1-25, July.
    10. Fouilloy, Alexis & Voyant, Cyril & Notton, Gilles & Motte, Fabrice & Paoli, Christophe & Nivet, Marie-Laure & Guillot, Emmanuel & Duchaud, Jean-Laurent, 2018. "Solar irradiation prediction with machine learning: Forecasting models selection method depending on weather variability," Energy, Elsevier, vol. 165(PA), pages 620-629.
    11. Aly, Shahzada Pamir & Ahzi, Said & Barth, Nicolas, 2019. "An adaptive modelling technique for parameters extraction of photovoltaic devices under varying sunlight and temperature conditions," Applied Energy, Elsevier, vol. 236(C), pages 728-742.
    12. Talaat, M. & Farahat, M.A. & Elkholy, M.H., 2019. "Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies," Energy, Elsevier, vol. 170(C), pages 668-682.
    13. Widyolar, Bennett K. & Abdelhamid, Mahmoud & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2017. "Design, simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 101(C), pages 1379-1389.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elkholy, M.H. & Elymany, Mahmoud & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Design and implementation of a Real-time energy management system for an isolated Microgrid: Experimental validation," Applied Energy, Elsevier, vol. 327(C).
    2. Pratibha Rani & Arunodaya Raj Mishra & Abbas Mardani & Fausto Cavallaro & Dalia Štreimikienė & Syed Abdul Rehman Khan, 2020. "Pythagorean Fuzzy SWARA–VIKOR Framework for Performance Evaluation of Solar Panel Selection," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    3. Issoufou Tahirou Halidou & Harun Or Rashid Howlader & Mahmoud M. Gamil & M. H. Elkholy & Tomonobu Senjyu, 2023. "Optimal Power Scheduling and Techno-Economic Analysis of a Residential Microgrid for a Remotely Located Area: A Case Study for the Sahara Desert of Niger," Energies, MDPI, vol. 16(8), pages 1-23, April.
    4. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    5. Adel Alblawi & M. Talaat, 2022. "Experimental and Simulation Study Investigating the Effect of a Transparent Pyramidal Cover on PV Cell Performance," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    6. Mahmoud H. Elkholy & Tomonobu Senjyu & Mohammed Elsayed Lotfy & Abdelrahman Elgarhy & Nehad S. Ali & Tamer S. Gaafar, 2022. "Design and Implementation of a Real-Time Smart Home Management System Considering Energy Saving," Sustainability, MDPI, vol. 14(21), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmood, Faiza & Ghani, Muhammad Usman & Asim, Muhammad Nabeel & Shahzadi, Rehab & Mehmood, Aamir & Mahmood, Waqar, 2021. "MPF-Net: A computational multi-regional solar power forecasting framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Qing, Xiangyun & Niu, Yugang, 2018. "Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM," Energy, Elsevier, vol. 148(C), pages 461-468.
    3. Jean-Laurent Duchaud & Cyril Voyant & Alexis Fouilloy & Gilles Notton & Marie-Laure Nivet, 2020. "Trade-Off between Precision and Resolution of a Solar Power Forecasting Algorithm for Micro-Grid Optimal Control," Energies, MDPI, vol. 13(14), pages 1-16, July.
    4. Gairaa, Kacem & Voyant, Cyril & Notton, Gilles & Benkaciali, Saïd & Guermoui, Mawloud, 2022. "Contribution of ordinal variables to short-term global solar irradiation forecasting for sites with low variabilities," Renewable Energy, Elsevier, vol. 183(C), pages 890-902.
    5. Hassan, Muhammed A. & Al-Ghussain, Loiy & Ahmad, Adnan Darwish & Abubaker, Ahmad M. & Khalil, Adel, 2022. "Aggregated independent forecasters of half-hourly global horizontal irradiance," Renewable Energy, Elsevier, vol. 181(C), pages 365-383.
    6. Liu, Da & Sun, Kun, 2019. "Random forest solar power forecast based on classification optimization," Energy, Elsevier, vol. 187(C).
    7. Cecilia Martinez-Castillo & Gonzalo Astray & Juan Carlos Mejuto, 2021. "Modelling and Prediction of Monthly Global Irradiation Using Different Prediction Models," Energies, MDPI, vol. 14(8), pages 1-16, April.
    8. Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    9. Shab Gbémou & Julien Eynard & Stéphane Thil & Emmanuel Guillot & Stéphane Grieu, 2021. "A Comparative Study of Machine Learning-Based Methods for Global Horizontal Irradiance Forecasting," Energies, MDPI, vol. 14(11), pages 1-23, May.
    10. Shang, Chuanfu & Wei, Pengcheng, 2018. "Enhanced support vector regression based forecast engine to predict solar power output," Renewable Energy, Elsevier, vol. 127(C), pages 269-283.
    11. Guillermo Valencia Ochoa & Jose Nunez Alvarez & Carlos Acevedo, 2019. "Research Evolution on Renewable Energies Resources from 2007 to 2017: A Comparative Study on Solar, Geothermal, Wind and Biomass Energy," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 242-253.
    12. Puah, Boon Keat & Chong, Lee Wai & Wong, Yee Wan & Begam, K.M. & Khan, Nafizah & Juman, Mohammed Ayoub & Rajkumar, Rajprasad Kumar, 2021. "A regression unsupervised incremental learning algorithm for solar irradiance prediction," Renewable Energy, Elsevier, vol. 164(C), pages 908-925.
    13. Zhou, Anhua & Li, Jun, 2022. "How do trade liberalization and human capital affect renewable energy consumption? Evidence from the panel threshold model," Renewable Energy, Elsevier, vol. 184(C), pages 332-342.
    14. Alvarado, Rafael & Deng, Qiushi & Tillaguango, Brayan & Méndez, Priscila & Bravo, Diana & Chamba, José & Alvarado-Lopez, María & Ahmad, Munir, 2021. "Do economic development and human capital decrease non-renewable energy consumption? Evidence for OECD countries," Energy, Elsevier, vol. 215(PB).
    15. Tyler McCandless & Susan Dettling & Sue Ellen Haupt, 2020. "Comparison of Implicit vs. Explicit Regime Identification in Machine Learning Methods for Solar Irradiance Prediction," Energies, MDPI, vol. 13(3), pages 1-14, February.
    16. Ghadah Alkhayat & Syed Hamid Hasan & Rashid Mehmood, 2022. "SENERGY: A Novel Deep Learning-Based Auto-Selective Approach and Tool for Solar Energy Forecasting," Energies, MDPI, vol. 15(18), pages 1-55, September.
    17. Zeeshan Arshad & Margarita Robaina & Anabela Botelho, 2020. "Renewable and Non-renewable Energy, Economic Growth and Natural Resources Impact on Environmental Quality: Empirical Evidence from South and Southeast Asian Countries with CS-ARDL Modeling," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 368-383.
    18. Zambrano, Andres Felipe & Giraldo, Luis Felipe, 2020. "Solar irradiance forecasting models without on-site training measurements," Renewable Energy, Elsevier, vol. 152(C), pages 557-566.
    19. Prasad, Ramendra & Ali, Mumtaz & Xiang, Yong & Khan, Huma, 2020. "A double decomposition-based modelling approach to forecast weekly solar radiation," Renewable Energy, Elsevier, vol. 152(C), pages 9-22.
    20. Zhongwei, Huang & Liu, Yishu, 2022. "The role of eco-innovations, trade openness, and human capital in sustainable renewable energy consumption: Evidence using CS-ARDL approach," Renewable Energy, Elsevier, vol. 201(P1), pages 131-140.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6802-:d:292589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.