IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i23p6633-d290278.html
   My bibliography  Save this article

Identifying Ecosystem-Based Alternatives for the Design of a Seaport’s Marine Infrastructure: The Case of Tema Port Expansion in Ghana

Author

Listed:
  • Wiebe P. de Boer

    (Deltares, Boussinesqweg 1, 2629 HV Delft, The Netherlands
    Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands)

  • Jill H. Slinger

    (Faculty of Technology Policy and Management, Delft University of Technology, Jaffalaan 5, 2628 BX Delft, The Netherlands
    Institute for Water Research, Rhodes University, Artillery Road, Grahamstown 6140, South Africa)

  • Arno K. wa Kangeri

    (Wageningen Marine Research, P.O. Box 57, 1780 AB Den Helder, The Netherlands)

  • Heleen S.I. Vreugdenhil

    (Deltares, Boussinesqweg 1, 2629 HV Delft, The Netherlands
    Faculty of Technology Policy and Management, Delft University of Technology, Jaffalaan 5, 2628 BX Delft, The Netherlands)

  • Poonam Taneja

    (Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands)

  • Kwasi Appeaning Addo

    (Department of Marine and Fisheries Sciences, University of Ghana, P. O. Box LG 99, Legon-Accra, Ghana)

  • Tiedo Vellinga

    (Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands)

Abstract

Long-term sustainable port development requires accounting for the intrinsic values of ecosystems. However, in practice, ecosystem considerations often only enter the planning and design process of ports when required by an Environmental Impact Assessment. At this late stage, most of the design is already fixed and opportunities to minimize and restore ecosystem impacts are limited. In this paper, we adopt a large-scale, ecosystem perspective on port development with the aim to identify ecosystem-based design alternatives earlier and throughout the planning and design of a port’s marine infrastructure. We present a framework, termed the ‘ecosystem-based port design hierarchy’ (EPDH), to identify ecosystem-based alternatives at four hierarchical design levels: 1) alternatives to port developments, 2) port site selection, 3) port layout design, and 4) design of structures and materials. In applying the EPDH framework retrospectively to a case study of port expansion in Tema, Ghana, we establish that ecosystem considerations played only a limited role in identifying and evaluating alternatives at all four design levels in the case study, whereas more eco-friendly alternatives in terms of port layouts, structures, and materials are identified using the EPDH framework. This reveals that opportunities for ecosystem-friendly port designs may have been missed and demonstrates the need for and the potential added value of our framework. The framework can assist practitioners in earlier and wider identification of ecosystem-based alternatives for a port’s marine infrastructure in future seaport developments and, hence, represents an important step towards more sustainable port designs.

Suggested Citation

  • Wiebe P. de Boer & Jill H. Slinger & Arno K. wa Kangeri & Heleen S.I. Vreugdenhil & Poonam Taneja & Kwasi Appeaning Addo & Tiedo Vellinga, 2019. "Identifying Ecosystem-Based Alternatives for the Design of a Seaport’s Marine Infrastructure: The Case of Tema Port Expansion in Ghana," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6633-:d:290278
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/23/6633/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/23/6633/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harry Barnes-Dabban & Kris Van Koppen & Arthur Mol, 2017. "Environmental reform of West and Central Africa ports: the influence of colonial legacies," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(5), pages 565-583, July.
    2. Stijn Temmerman & Patrick Meire & Tjeerd J. Bouma & Peter M. J. Herman & Tom Ysebaert & Huib J. De Vriend, 2013. "Ecosystem-based coastal defence in the face of global change," Nature, Nature, vol. 504(7478), pages 79-83, December.
    3. Jasmine Siu Lee Lam & Theo Notteboom, 2014. "The Greening of Ports: A Comparison of Port Management Tools Used by Leading Ports in Asia and Europe," Transport Reviews, Taylor & Francis Journals, vol. 34(2), pages 169-189, March.
    4. Eric Tamatey Lawer, 2019. "Examining stakeholder participation and conflicts associated with large scale infrastructure projects: the case of Tema port expansion project, Ghana," Maritime Policy & Management, Taylor & Francis Journals, vol. 46(6), pages 735-756, August.
    5. Ross Robinson, 2002. "Ports as elements in value-driven chain systems: the new paradigm," Maritime Policy & Management, Taylor & Francis Journals, vol. 29(3), pages 241-255.
    6. Kulsum Ahmed & Ernesto Sánchez-Triana, 2008. "Strategic Environmental Assessment for Policies : An Instrument for Good Governance," World Bank Publications - Books, The World Bank Group, number 6461.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vytautas Paulauskas & Ludmiła Filina-Dawidowicz & Donatas Paulauskas, 2020. "The Method to Decrease Emissions from Ships in Port Areas," Sustainability, MDPI, vol. 12(11), pages 1-15, May.
    2. Maurice Jansen & Carola Hein, 2023. "Port city symbiosis: introduction to the special issue," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(2), pages 211-229, June.
    3. Ying Zheng & Jingzhu Zhao & Guofan Shao, 2020. "Port City Sustainability: A Review of Its Research Trends," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    4. Olena de Andres Gonzalez & Heikki Koivisto & Jari M. Mustonen & Minna M. Keinänen-Toivola, 2021. "Digitalization in Just-In-Time Approach as a Sustainable Solution for Maritime Logistics in the Baltic Sea Region," Sustainability, MDPI, vol. 13(3), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Tamatey Lawer & Johannes Herbeck & Michael Flitner, 2019. "Selective Adoption: How Port Authorities in Europe and West Africa Engage with the Globalizing ‘Green Port’ Idea," Sustainability, MDPI, vol. 11(18), pages 1-22, September.
    2. Theo E. Notteboom & Hercules E. Haralambides, 2020. "Port management and governance in a post-COVID-19 era: quo vadis?," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(3), pages 329-352, September.
    3. Yap, Wei Yim & Lam, Jasmine S.L., 2006. "Competition dynamics between container ports in East Asia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(1), pages 35-51, January.
    4. Chin-Shan Lu & Kuo-Chung Shang & Chi-Chang Lin, 2016. "Examining sustainability performance at ports: port managers’ perspectives on developing sustainable supply chains," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(8), pages 909-927, November.
    5. Quintano, Claudio & Mazzocchi, Paolo & Rocca, Antonella, 2021. "Evaluation of the eco-efficiency of territorial districts with seaport economic activities," Utilities Policy, Elsevier, vol. 71(C).
    6. Kai Zhou & Xiang Yuan & Ziyuan Guo & Jianrui Wu & Ruijia Li, 2024. "Research on Sustainable Port: Evaluation of Green Port Policies on China’s Coasts," Sustainability, MDPI, vol. 16(10), pages 1-25, May.
    7. Laima Gerlitz & Christopher Meyer, 2021. "Small and Medium-Sized Ports in the TEN-T Network and Nexus of Europe’s Twin Transition: The Way towards Sustainable and Digital Port Service Ecosystems," Sustainability, MDPI, vol. 13(8), pages 1-24, April.
    8. Haiying Jia & Ove Daae Lampe & Veronika Solteszova & Siri P. Strandenes, 2017. "Norwegian port connectivity and its policy implications," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(8), pages 956-966, November.
    9. Zhang, Qiang & Zheng, Shiyuan & Geerlings, Harry & El Makhloufi, Abdel, 2019. "Port governance revisited: How to govern and for what purpose?," Transport Policy, Elsevier, vol. 77(C), pages 46-57.
    10. Yang, Zaili & Ng, Adolf K.Y. & Wang, Jin, 2014. "A new risk quantification approach in port facility security assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 72-90.
    11. Laure Rousset & César Ducruet, 2020. "Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns," Networks and Spatial Economics, Springer, vol. 20(2), pages 423-447, June.
    12. Daniel Olivier & Brian Slack, 2006. "Rethinking the Port," Environment and Planning A, , vol. 38(8), pages 1409-1427, August.
    13. van Asperen, E. & Dekker, R., 2010. "Flexibility in Port Selection: A Quantitative Approach Using Floating Stocks," Econometric Institute Research Papers EI 2009-44, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Wouter Jacobs & Theo Notteboom, 2011. "An Evolutionary Perspective on Regional Port Systems: The Role of Windows of Opportunity in Shaping Seaport Competition," Environment and Planning A, , vol. 43(7), pages 1674-1692, July.
    15. Yiran Sun & Yuqian Wang & Jingci Xie, 2022. "The co-evolution of seaports and dry ports in Shandong province in China under the Belt and Road Initiative," Journal of Shipping and Trade, Springer, vol. 7(1), pages 1-27, December.
    16. Di Vaio, Assunta & Varriale, Luisa & Alvino, Federico, 2018. "Key performance indicators for developing environmentally sustainable and energy efficient ports: Evidence from Italy," Energy Policy, Elsevier, vol. 122(C), pages 229-240.
    17. Gerald Schernewski & Lars Niklas Voeckler & Leon Lambrecht & Esther Robbe & Johanna Schumacher, 2022. "Building with Nature—Ecosystem Service Assessment of Coastal-Protection Scenarios," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    18. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    19. Lam Thi Mai Huynh & Jie Su & Quanli Wang & Lindsay C. Stringer & Adam D. Switzer & Alexandros Gasparatos, 2024. "Meta-analysis indicates better climate adaptation and mitigation performance of hybrid engineering-natural coastal defence measures," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Pérez-Maqueo, Octavio & Martínez, M. Luisa & Cóscatl Nahuacatl, Rosendo, 2017. "Is the protection of beach and dune vegetation compatible with tourism?," Tourism Management, Elsevier, vol. 58(C), pages 175-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6633-:d:290278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.