IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1681-d228093.html
   My bibliography  Save this article

Reducing the Superheating of Extraction Stream on Advanced-Ultra Super Critical Power Plants with Regenerative Turbines in South Korea: An Economic Analysis

Author

Listed:
  • Dong-Jin Cho

    (Dae-Woo Engineering and Construction, Division of Plant Engineering, 75 Saemunan-Ro, Jongro-Ku, Seoul 03182, Korea
    Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Ku, Pohang 37673, Korea)

  • Eul-Bum Lee

    (Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Ku, Pohang 37673, Korea
    Department of Industrial and Management Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Ku, Pohang 37673, Korea)

  • Jae-Min Cho

    (Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Ku, Pohang 37673, Korea)

  • Douglas Alleman

    (Construction Engineering and Management, Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, CO 80309, USA)

Abstract

In this study, an advanced-ultra super critical (A-USC) simulation model was developed using the Performance Evaluation of power system efficiencies (PEPSE) software and data collected from a 500 MW ultra-supercritical (USC) coal-fired power plant in South Korea. Using the operational USC and a typical A-USC power plant steam conditions, the model analyzed the impacts of adding an additional feedwater heater (FWH) and reheater to the baseline single reheater (SR) and 8 FWH case. Through the process of introducing reheat and/or regenerative cycles, the authors found: (1) A-USC steam conditions offers an approximate 4% power plant efficiency increase in comparison to the baseline USC steam conditions and; (2) power plant efficiencies increase approximately 1.5% when a 9th FWH and double reheater are added, however; (3) this also results in an approximate 64 °C increase in the superheating of extraction stream. This excessive rise in the superheating of extraction steam was found to cause overall energy loss, reducing the overall efficiency of the power plant. Therefore, it was surmised that if the increase in the superheat degree of extraction steam from the improved steam cycle, which can effectively reduce, the efficiency of the power plant could be further improved. To determine the efficiency variations based on the reduction of the superheat degree of extraction steam, the authors applied a regenerative turbine (RT) to the model. Introducing the RT to the A-USC DR and 9 FWH was found to decrease from the average extraction steam temperature from 221 °C to 108 °C and result in an increase in power plant efficiency of approximately 0.3% to 49.5%. An economic analysis was also performed to assess the fiscal feasibility of adding an RT. Assuming the initial investment to be USD 1409 million, implementing an RT equated to a net present value increase of approximately USD 33 million as compared to that of similar life (30 years of durability) expectancy of A-USC without using an RT. The findings of this study have the potential to improve South Korea’s energy policy, reducing the superheat degree of extraction steam that rises excessively during A-USC steam condition optimization. While this study is focused on South Korea, said findings are also generalizable to worldwide energy policies, serving as an effective method to not only increase system efficiencies, but enhance the economic feasibility as well.

Suggested Citation

  • Dong-Jin Cho & Eul-Bum Lee & Jae-Min Cho & Douglas Alleman, 2019. "Reducing the Superheating of Extraction Stream on Advanced-Ultra Super Critical Power Plants with Regenerative Turbines in South Korea: An Economic Analysis," Energies, MDPI, vol. 12(9), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1681-:d:228093
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1681/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1681/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luo, Xianglong & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2011. "Modeling and optimization of a utility system containing multiple extractions steam turbines," Energy, Elsevier, vol. 36(5), pages 3501-3512.
    2. Erbay, L. Berrin & Göktun, Selahattin & Yavuz, Hasbi, 2001. "Optimal design of the regenerative gas turbine engine with isothermal heat addition," Applied Energy, Elsevier, vol. 68(3), pages 249-264, March.
    3. Yang-Kon Kim & Eul-Bum Lee, 2018. "Optimization Simulation, Using Steel Plant Off-Gas for Power Generation: A Life-Cycle Cost Analysis Approach," Energies, MDPI, vol. 11(11), pages 1-17, October.
    4. Ligang Wang & Yongping Yang & Changqing Dong & Zhiping Yang & Gang Xu & Lingnan Wu, 2012. "Exergoeconomic Evaluation of a Modern Ultra-Supercritical Power Plant," Energies, MDPI, vol. 5(9), pages 1-17, September.
    5. Habib, M.A. & Zubair, S.M., 1992. "Second-law-based thermodynamic analysis of regenerative-reheat Rankine-cycle power plants," Energy, Elsevier, vol. 17(3), pages 295-301.
    6. Graham, John R. & Harvey, Campbell R., 2001. "The theory and practice of corporate finance: evidence from the field," Journal of Financial Economics, Elsevier, vol. 60(2-3), pages 187-243, May.
    7. Chul-Seung Hong & Eul-Bum Lee, 2018. "Power Plant Economic Analysis: Maximizing Lifecycle Profitability by Simulating Preliminary Design Solutions of Steam-Cycle Conditions," Energies, MDPI, vol. 11(9), pages 1-21, August.
    8. Ligang Wang & Yongping Yang & Tatiana Morosuk & George Tsatsaronis, 2012. "Advanced Thermodynamic Analysis and Evaluation of a Supercritical Power Plant," Energies, MDPI, vol. 5(6), pages 1-14, June.
    9. Hyun-Chul Lee & Eul-Bum Lee & Douglas Alleman, 2018. "Schedule Modeling to Estimate Typical Construction Durations and Areas of Risk for 1000 MW Ultra-Critical Coal-Fired Power Plants," Energies, MDPI, vol. 11(10), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Shunqi & Liu, Ming & Ma, Yuegeng & Liu, Jiping & Yan, Junjie, 2021. "Flexibility assessment of a modified double-reheat Rankine cycle integrating a regenerative turbine during recuperative heater shutdown processes," Energy, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    2. Hee-Kwan Shin & Jae-Min Cho & Eul-Bum Lee, 2019. "Electrical Power Characteristics and Economic Analysis of Distributed Generation System Using Renewable Energy: Applied to Iron and Steel Plants," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    3. Li, Xiaoen & Wang, Ningling & Wang, Ligang & Yang, Yongping & Maréchal, François, 2018. "Identification of optimal operating strategy of direct air-cooling condenser for Rankine cycle based power plants," Applied Energy, Elsevier, vol. 209(C), pages 153-166.
    4. Chul-Seung Hong & Eul-Bum Lee, 2018. "Power Plant Economic Analysis: Maximizing Lifecycle Profitability by Simulating Preliminary Design Solutions of Steam-Cycle Conditions," Energies, MDPI, vol. 11(9), pages 1-21, August.
    5. He, Qing & Liu, Hui & Hao, Yinping & Liu, Yaning & Liu, Wenyi, 2018. "Thermodynamic analysis of a novel supercritical compressed carbon dioxide energy storage system through advanced exergy analysis," Renewable Energy, Elsevier, vol. 127(C), pages 835-849.
    6. Wang, Ligang & Yang, Yongping & Dong, Changqing & Morosuk, Tatiana & Tsatsaronis, George, 2014. "Multi-objective optimization of coal-fired power plants using differential evolution," Applied Energy, Elsevier, vol. 115(C), pages 254-264.
    7. Zhao, Zhigang & Su, Sheng & Si, Ningning & Hu, Song & Wang, Yi & Xu, Jun & Jiang, Long & Chen, Gang & Xiang, Jun, 2017. "Exergy analysis of the turbine system in a 1000 MW double reheat ultra-supercritical power plant," Energy, Elsevier, vol. 119(C), pages 540-548.
    8. Wang, Ligang & Lampe, Matthias & Voll, Philip & Yang, Yongping & Bardow, André, 2016. "Multi-objective superstructure-free synthesis and optimization of thermal power plants," Energy, Elsevier, vol. 116(P1), pages 1104-1116.
    9. Frank D. Hodge & Roger D. Martin & Jamie H. Pratt, 2006. "Audit Qualifications of Income†Decreasing Accounting Choices," Contemporary Accounting Research, John Wiley & Sons, vol. 23(2), pages 369-394, June.
    10. Fogel, Kathy & Jandik, Tomas & McCumber, William R., 2018. "CFO social capital and private debt," Journal of Corporate Finance, Elsevier, vol. 52(C), pages 28-52.
    11. YV Reddy, 2012. "Summary of the discussion," BIS Papers chapters, in: Bank for International Settlements (ed.), Financial sector regulation for growth, equity and stability, volume 62, pages 39-40, Bank for International Settlements.
    12. ManYing Kang & Marcel Ausloos, 2017. "An Inverse Problem Study: Credit Risk Ratings as a Determinant of Corporate Governance and Capital Structure in Emerging Markets: Evidence from Chinese Listed Companies," Economies, MDPI, vol. 5(4), pages 1-23, November.
    13. Ulrike Malmendier & Vincenzo Pezone & Hui Zheng, 2023. "Managerial Duties and Managerial Biases," Management Science, INFORMS, vol. 69(6), pages 3174-3201, June.
    14. Zabolotnyy, Serihiy & Wasilewski, Mirosław, 2018. "Operating and financial leverage as risk measures in agricultural companies," Problems of Agricultural Economics / Zagadnienia Ekonomiki Rolnej 276377, Institute of Agricultural and Food Economics - National Research Institute (IAFE-NRI).
    15. Ayyagari, Meghana & Demirguc-Kunt, Asli & Maksimovic, Vojislav, 2014. "Does local financial development matter for firm lifecycle in India ?," Policy Research Working Paper Series 7008, The World Bank.
    16. Jennifer Blouin & Harry Huizinga & Luc Laeven & Gaëtan Nicodème, 2013. "Thin capitalization rules and multinational firm capital structure," Working Papers 1323, Oxford University Centre for Business Taxation.
    17. Luca Riccetti & Alberto Russo & Mauro Gallegati, 2015. "An agent based decentralized matching macroeconomic model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 305-332, October.
    18. Koh, SzeKee & Durand, Robert B. & Watson, Iain, 2011. "Seize the moment: Opportunism in Australian capital markets," Pacific-Basin Finance Journal, Elsevier, vol. 19(4), pages 374-389, September.
    19. Andres, Christian & Cumming, Douglas & Karabiber, Timur & Schweizer, Denis, 2014. "Do markets anticipate capital structure decisions? — Feedback effects in equity liquidity," Journal of Corporate Finance, Elsevier, vol. 27(C), pages 133-156.
    20. Ullah, Barkat, 2021. "Does innovation explain the performance gap between privatized and private firms?," Journal of Economics and Business, Elsevier, vol. 113(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1681-:d:228093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.