IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i21p6174-d283757.html
   My bibliography  Save this article

Quantitative Influence of Land-Use Changes and Urban Expansion Intensity on Landscape Pattern in Qingdao, China: Implications for Urban Sustainability

Author

Listed:
  • Jinming Yang

    (School of Landscape Architecture and Forestry, Qingdao Agriculture University, Qingdao 266109, China)

  • Shimei Li

    (School of Landscape Architecture and Forestry, Qingdao Agriculture University, Qingdao 266109, China)

  • Huicui Lu

    (School of Landscape Architecture and Forestry, Qingdao Agriculture University, Qingdao 266109, China)

Abstract

The spatial structure and configuration of land-use patches, i.e., landscape patterns could affect the flow of energy and materials in inner-urban ecosystems, and hence the sustainable development of urban areas. Studying landscape pattern changes under the process of urbanization would have implicational significance to urban planning and urban sustainability. In this paper, land-use change and urban expansion intensity (UEI) were treated as the inducement factors for changes in landscape patterns, and stepwise regression and geographically weighted regression (GWR) were adapted to quantify their integrated and distributed magnitude effects on landscape patterns, respectively. The findings suggested that land-uses have different contributions to changes in landscape patterns at different urban development zones (downtown, suburban plain area and mountainous suburban areas). Furthermore, the GWR analysis results indicated that the effect of UEI on landscape patterns has spatial and temporal heterogeneity. From 1987 to 2000, the UEI had great explanatory capacity on changes in landscape patterns and helped the landscape assemble faster in the downtown and adjacent areas. However, with the shifting of the center of urban construction from downtown to the suburbs, the high explanatory ability was oriented towards suburban areas during 2000–2016 and the magnitude of influence spatially changed. Therefore, a compact city and protection policy should be adapted to different regions in the study area to achieve strong urban sustainability.

Suggested Citation

  • Jinming Yang & Shimei Li & Huicui Lu, 2019. "Quantitative Influence of Land-Use Changes and Urban Expansion Intensity on Landscape Pattern in Qingdao, China: Implications for Urban Sustainability," Sustainability, MDPI, vol. 11(21), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6174-:d:283757
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/21/6174/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/21/6174/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schindler, Stefan & von Wehrden, Henrik & Poirazidis, Kostas & Hochachka, Wesley M. & Wrbka, Thomas & Kati, Vassiliki, 2015. "Performance of methods to select landscape metrics for modelling species richness," Ecological Modelling, Elsevier, vol. 295(C), pages 107-112.
    2. Schulp, Catharina J.E. & Levers, Christian & Kuemmerle, Tobias & Tieskens, Koen F. & Verburg, Peter H., 2019. "Mapping and modelling past and future land use change in Europe’s cultural landscapes," Land Use Policy, Elsevier, vol. 80(C), pages 332-344.
    3. Endreny, T. & Santagata, R. & Perna, A. & Stefano, C. De & Rallo, R.F. & Ulgiati, S., 2017. "Implementing and managing urban forests: A much needed conservation strategy to increase ecosystem services and urban wellbeing," Ecological Modelling, Elsevier, vol. 360(C), pages 328-335.
    4. Shaoying Li & Xiaoping Liu & Zhigang Li & Zhifeng Wu & Zijun Yan & Yimin Chen & Feng Gao, 2018. "Spatial and Temporal Dynamics of Urban Expansion along the Guangzhou–Foshan Inter-City Rail Transit Corridor, China," Sustainability, MDPI, vol. 10(3), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingxue Rao & Jingyi Dai & Deyi Dai & Qingsong He & Huiying Wang, 2021. "Effect of Compactness of Urban Growth on Regional Landscape Ecological Security," Land, MDPI, vol. 10(8), pages 1-17, August.
    2. Zhaolan Wang & Li Wang & Biao Zhao & Qian Pei, 2023. "Analysis of Spatiotemporal Interaction Characteristics and Decoupling Effects of Urban Expansion in the Central Plains Urban Agglomeration," Land, MDPI, vol. 12(4), pages 1-21, March.
    3. Batara Surya & Hadijah Hadijah & Seri Suriani & Baharuddin Baharuddin & A. Tenri Fitriyah & Firman Menne & Emil Salim Rasyidi, 2020. "Spatial Transformation of a New City in 2006–2020: Perspectives on the Spatial Dynamics, Environmental Quality Degradation, and Socio—Economic Sustainability of Local Communities in Makassar City, Ind," Land, MDPI, vol. 9(9), pages 1-50, September.
    4. Ngoc Uyen Phuong Nguyen & Martin G. Moehrle, 2019. "Technological Drivers of Urban Innovation: A T-DNA Analysis Based on US Patent Data," Sustainability, MDPI, vol. 11(24), pages 1-26, December.
    5. Yuji Murayama & Matamyo Simwanda & Manjula Ranagalage, 2021. "Spatiotemporal Analysis of Urbanization Using GIS and Remote Sensing in Developing Countries," Sustainability, MDPI, vol. 13(7), pages 1-5, March.
    6. Petr Hlaváček & Miroslav Kopáček & Lucie Horáčková, 2019. "Impact of Suburbanisation on Sustainable Development of Settlements in Suburban Spaces: Smart and New Solutions," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    7. Zhou, Dingyang & Li, Zitong & Wang, Sifei & Tian, Yingying & Zhang, Yu & Jiang, Guanghui, 2021. "How does the newly urban residential built-up density differ across Chinese cities under rapid urban expansion? Evidence from residential FAR and statistical data from 2007 to 2016," Land Use Policy, Elsevier, vol. 104(C).
    8. Hadj Ali, Célia & Roy, Damien & Amireche, Louisa & Antoni, Jean-Philipe, 2023. "Development of a Cellular Automata-based model approach for sustainable planning of affordable housing projects: an application case study in Algiers," Land Use Policy, Elsevier, vol. 125(C).
    9. Yong Zhu & Shihu Zhong & Ying Wang & Muhua Liu, 2021. "Land Use Evolution and Land Ecological Security Evaluation Based on AHP-FCE Model: Evidence from China," IJERPH, MDPI, vol. 18(22), pages 1-15, November.
    10. Correia, Inês C. & Ferreira, Fernando A.F. & Zopounidis, Constantin & Ferreira, Neuza C.M.Q.F., 2024. "Urban expansion effects on real estate ecosystems: Identification and neutrosophic analysis of causal dynamics," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    11. Xuning Qiao & Liang Liu & Yongju Yang & Yangyang Gu & Jinchan Zheng, 2022. "Urban Expansion Assessment Based on Optimal Granularity in the Huaihe River Basin of China," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    12. Piotr Gibas & Agnieszka Majorek, 2020. "Analysis of Land-Use Change between 2012–2018 in Europe in Terms of Sustainable Development," Land, MDPI, vol. 9(2), pages 1-20, February.
    13. Hanwen Zhang & Yanqing Lang, 2022. "Quantifying and Analyzing the Responses of Habitat Quality to Land Use Change in Guangdong Province, China over the Past 40 Years," Land, MDPI, vol. 11(6), pages 1-23, May.
    14. Kamal Abdelrahim Mohamed Shuka & Wang Ke & Mohammad Sohail Nazar & Ghali Abdullahi Abubakar & AmirReza Shahtahamssebi, 2022. "Impact of Hydrological Infrastructure Projects on Land Use/Cover and Socioeconomic Development in Arid Regions—Evidence from the Upper Atbara and Setit Dam Complex, Kassala, Eastern Sudan," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    15. Amal Najihah Muhamad Nor & Hasifah Abdul Aziz & Siti Aisyah Nawawi & Rohazaini Muhammad Jamil & Muhamad Azahar Abas & Kamarul Ariffin Hambali & Abdul Hafidz Yusoff & Norfadhilah Ibrahim & Nur Hairunni, 2021. "Evolution of Green Space under Rapid Urban Expansion in Southeast Asian Cities," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    16. Liang Guo & Xiaohuan Xi & Weijun Yang & Lei Liang, 2021. "Monitoring Land Use/Cover Change Using Remotely Sensed Data in Guangzhou of China," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    17. Yu Li & Haipeng Ye & Xu Sun & Ji Zheng & Dan Meng, 2021. "Coupling Analysis of the Thermal Landscape and Environmental Carrying Capacity of Urban Expansion in Beijing (China) over the Past 35 Years," Sustainability, MDPI, vol. 13(2), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud Owais & Abdou S. Ahmed & Ghada S. Moussa & Ahmed A. Khalil, 2020. "An Optimal Metro Design for Transit Networks in Existing Square Cities Based on Non-Demand Criterion," Sustainability, MDPI, vol. 12(22), pages 1-28, November.
    2. Rudl Ales & Machar Ivo & Uradnicek Lubos & Praus Ludek & Pechanec Vilem, 2019. "Young urban trees as important structures in the cultural heritage of cities – a case study from Prague," Environmental & Socio-economic Studies, Sciendo, vol. 7(3), pages 14-23, September.
    3. Di Pirro, E. & Sallustio, L. & Capotorti, G. & Marchetti, M. & Lasserre, B., 2021. "A scenario-based approach to tackle trade-offs between biodiversity conservation and land use pressure in Central Italy," Ecological Modelling, Elsevier, vol. 448(C).
    4. Xinyu Ouyang & Xiangyu Luo, 2022. "Models for Assessing Urban Ecosystem Services: Status and Outlooks," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    5. Peikun Li & Quantao Yang & Wenbo Lu & Shu Xi & Hao Wang, 2024. "An Improved Machine Learning Framework Considering Spatiotemporal Heterogeneity for Analyzing the Relationship Between Subway Station-Level Passenger Flow Resilience and Land Use-Related Built Environ," Land, MDPI, vol. 13(11), pages 1-20, November.
    6. Pahlavani, Parham & Sheikhian, Hossein & Bigdeli, Behnaz, 2020. "Evaluation of residential land use compatibilities using a density-based IOWA operator and an ANFIS-based model: A case study of Tehran, Iran," Land Use Policy, Elsevier, vol. 90(C).
    7. Tomasz Rokicki & Aleksandra Perkowska & Bogdan Klepacki & Piotr Bórawski & Aneta Bełdycka-Bórawska & Konrad Michalski, 2021. "Changes in Energy Consumption in Agriculture in the EU Countries," Energies, MDPI, vol. 14(6), pages 1-21, March.
    8. Susana Silva & Paulo Carvalho, 2022. "Historic Gardens Heritage in Portugal: From the Originality of an Art to the Inventory Process," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    9. Chuai, Xiaowei & Yuan, Ye & Zhang, Xiuying & Guo, Xiaomin & Zhang, Xiaolei & Xie, Fangjian & Zhao, Rongqin & Li, Jianbao, 2019. "Multiangle land use-linked carbon balance examination in Nanjing City, China," Land Use Policy, Elsevier, vol. 84(C), pages 305-315.
    10. Monge, Juan J. & McDonald, Garry W., 2020. "The Economy-Wide Value-at-Risk from the Exposure of Natural Capital to Climate Change and Extreme Natural Events: The Case of Wind Damage and Forest Recreational Services in New Zealand," Ecological Economics, Elsevier, vol. 176(C).
    11. Orsi, Francesco & Ciolli, Marco & Primmer, Eeva & Varumo, Liisa & Geneletti, Davide, 2020. "Mapping hotspots and bundles of forest ecosystem services across the European Union," Land Use Policy, Elsevier, vol. 99(C).
    12. David Martin & Sidney Swearingen, 2019. "Improving Environmental Justice Analysis of Urban Tree Ecosystem Services: A Case Study from Asheville, NC," Working Papers 19-01, Davidson College, Department of Economics.
    13. Sharma, Reena & Bakshi, Bhavik R. & Ramteke, Manojkumar & Kodamana, Hariprasad, 2024. "Quantifying ecosystem services from trees by using i-tree with low-resolution satellite images," Ecosystem Services, Elsevier, vol. 67(C).
    14. Zhiyuan Wang & Felix Bachofer & Jonas Koehler & Juliane Huth & Thorsten Hoeser & Mattia Marconcini & Thomas Esch & Claudia Kuenzer, 2022. "Spatial Modelling and Prediction with the Spatio-Temporal Matrix: A Study on Predicting Future Settlement Growth," Land, MDPI, vol. 11(8), pages 1-23, July.
    15. Luis Gomes & Tânia Nobre & Adélia Sousa & Fernando Rei & Nuno Guiomar, 2020. "Hyperspectral Reflectance as a Basis to Discriminate Olive Varieties—A Tool for Sustainable Crop Management," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    16. Xiaowei Chuai & Jiqun Wen & Dachang Zhuang & Xiaomin Guo & Ye Yuan & Yue Lu & Mei Zhang & Jiasheng Li, 2019. "Intersection of Physical and Anthropogenic Effects on Land-Use/Land-Cover Changes in Coastal China of Jiangsu Province," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    17. Abdullah F. Alqurashi, 2021. "Quantification of Urban Patterns and Processes through Space and Time Using Remote Sensing Data: A Comparative Study between Three Saudi Arabian Cities," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    18. René Ulloa-Espíndola & Susana Martín-Fernández, 2021. "Simulation and Analysis of Land Use Changes Applying Cellular Automata in the South of Quito and the Machachi Valley, Province of Pichincha, Ecuador," Sustainability, MDPI, vol. 13(17), pages 1-25, August.
    19. Maragno, Denis & Gaglio, Mattias & Robbi, Martina & Appiotti, Federica & Fano, Elisa Anna & Gissi, Elena, 2018. "Fine-scale analysis of urban flooding reduction from green infrastructure: An ecosystem services approach for the management of water flows," Ecological Modelling, Elsevier, vol. 386(C), pages 1-10.
    20. Mariana Oliveira & Remo Santagata & Serena Kaiser & Yanxin Liu & Chiara Vassillo & Patrizia Ghisellini & Gengyuan Liu & Sergio Ulgiati, 2022. "Socioeconomic and Environmental Benefits of Expanding Urban Green Areas: A Joint Application of i-Tree and LCA Approaches," Land, MDPI, vol. 11(12), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6174-:d:283757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.