IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i11p1887-d1518579.html
   My bibliography  Save this article

An Improved Machine Learning Framework Considering Spatiotemporal Heterogeneity for Analyzing the Relationship Between Subway Station-Level Passenger Flow Resilience and Land Use-Related Built Environment

Author

Listed:
  • Peikun Li

    (Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China)

  • Quantao Yang

    (Department of Public Security, Shaanxi Police College, Xi’an 710021, China)

  • Wenbo Lu

    (School of Transportation, Southeast University, Nanjing 214135, China
    Department of Civil Engineering, Monash University, Melbourne, VIC 3800, Australia)

  • Shu Xi

    (Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China)

  • Hao Wang

    (Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China)

Abstract

The COVID-19 pandemic and similar public health emergencies have significantly impacted global travel patterns. Analyzing the recovery characteristics of subway station-level passenger flow during the pandemic recovery phase can offer unique insights into public transportation operations and guide practical planning efforts. This pioneering study constructs a station-level passenger flow recovery resilience (PFRR) index during the rapid recovery phase using subway AFC system swipe data. Additionally, it develops an analytical framework based on a multiscale geographically weighted regression (MGWR) model, the improved gray wolf optimization with Levy flight (LGWO), and light gradient boosting machine (LightGBM) regression to analyze passenger flow resilience on weekdays and weekends in relation to land use-related built environment types. Finally, SHAP attribution analysis is used to study the nonlinear relationships between built environment variables and PFRR index. The results show significant spatial heterogeneity in the impact of commercial, recreational, and residential land, as well as POI (points of interest) of leisure and shopping on PFRR. On weekdays, the most relevant built environment variables for PFRR are POI of enterprises and shopping numbers. In contrast, the contribution of built environment variables affecting PFRR of weekend is more balanced, reflecting the recovery of non-essential travel on weekends. Most land use-related built environment variables exhibit nonlinear associations with PFRR values. The proposed analytical framework shows significant performance advantages over other baseline models. This study provides unique insights into subway passenger flow characteristics and surrounding land use-related development layouts under the impact of public health emergencies.

Suggested Citation

  • Peikun Li & Quantao Yang & Wenbo Lu & Shu Xi & Hao Wang, 2024. "An Improved Machine Learning Framework Considering Spatiotemporal Heterogeneity for Analyzing the Relationship Between Subway Station-Level Passenger Flow Resilience and Land Use-Related Built Environ," Land, MDPI, vol. 13(11), pages 1-20, November.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1887-:d:1518579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/11/1887/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/11/1887/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhenbao Wang & Shuyue Liu & Haitao Lian & Xinyi Chen, 2024. "Investigating the Nonlinear Effect of Land Use and Built Environment on Public Transportation Choice Using a Machine Learning Approach," Land, MDPI, vol. 13(8), pages 1-16, August.
    2. Jinkyung Choi & Yong Lee & Taewan Kim & Keemin Sohn, 2012. "An analysis of Metro ridership at the station-to-station level in Seoul," Transportation, Springer, vol. 39(3), pages 705-722, May.
    3. Yadi Zhu & Feng Chen & Zijia Wang & Jin Deng, 2019. "Spatio-temporal analysis of rail station ridership determinants in the built environment," Transportation, Springer, vol. 46(6), pages 2269-2289, December.
    4. Jun, Myung-Jin & Choi, Keechoo & Jeong, Ji-Eun & Kwon, Ki-Hyun & Kim, Hee-Jae, 2015. "Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul," Journal of Transport Geography, Elsevier, vol. 48(C), pages 30-40.
    5. Peikun Li & Quantao Yang & Wenbo Lu, 2024. "Nonlinear Relationship of Multi-Source Land Use Features with Temporal Travel Distances at Subway Station Level: Empirical Study from Xi’an City," Land, MDPI, vol. 13(7), pages 1-16, July.
    6. Shaoying Li & Xiaoping Liu & Zhigang Li & Zhifeng Wu & Zijun Yan & Yimin Chen & Feng Gao, 2018. "Spatial and Temporal Dynamics of Urban Expansion along the Guangzhou–Foshan Inter-City Rail Transit Corridor, China," Sustainability, MDPI, vol. 10(3), pages 1-18, February.
    7. Lixun Liu & Yujiang Wang & Robin Hickman, 2023. "How Rail Transit Makes a Difference in People’s Multimodal Travel Behaviours: An Analysis with the XGBoost Method," Land, MDPI, vol. 12(3), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shaoying & Lyu, Dijiang & Huang, Guanping & Zhang, Xiaohu & Gao, Feng & Chen, Yuting & Liu, Xiaoping, 2020. "Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China," Journal of Transport Geography, Elsevier, vol. 82(C).
    2. Bo Wan & Xudan Zhao & Yuhan Sun & Tao Yang, 2023. "Unraveling the Impact of Spatial Configuration on TOD Function Mix Use and Spatial Intensity: An Analysis of 47 Morning Top-Flow Stations in Beijing (2018–2020)," Sustainability, MDPI, vol. 15(10), pages 1-27, May.
    3. Christian Martin Mützel & Joachim Scheiner, 2022. "Investigating spatio-temporal mobility patterns and changes in metro usage under the impact of COVID-19 using Taipei Metro smart card data," Public Transport, Springer, vol. 14(2), pages 343-366, June.
    4. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2018. "How urban density, network topology and socio-economy influence public transport ridership: Empirical evidence from 48 European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 72(C), pages 50-63.
    5. Vergel-Tovar, C. Erik & Rodriguez, Daniel A., 2018. "The ridership performance of the built environment for BRT systems: Evidence from Latin America," Journal of Transport Geography, Elsevier, vol. 73(C), pages 172-184.
    6. Peikun Li & Quantao Yang & Wenbo Lu, 2024. "Nonlinear Relationship of Multi-Source Land Use Features with Temporal Travel Distances at Subway Station Level: Empirical Study from Xi’an City," Land, MDPI, vol. 13(7), pages 1-16, July.
    7. Lijie Yu & Yarong Cong & Kuanmin Chen, 2020. "Determination of the Peak Hour Ridership of Metro Stations in Xi’an, China Using Geographically-Weighted Regression," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
    8. Ding, Chuan & Cao, Xinyu & Liu, Chao, 2019. "How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds," Journal of Transport Geography, Elsevier, vol. 77(C), pages 70-78.
    9. Yuxin He & Yang Zhao & Kwok Leung Tsui, 2021. "An adapted geographically weighted LASSO (Ada-GWL) model for predicting subway ridership," Transportation, Springer, vol. 48(3), pages 1185-1216, June.
    10. Lei Pang & Yuxiao Jiang & Jingjing Wang & Ning Qiu & Xiang Xu & Lijian Ren & Xinyu Han, 2023. "Research of Metro Stations with Varying Patterns of Ridership and Their Relationship with Built Environment, on the Example of Tianjin, China," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    11. Chen, Chao & Feng, Tao & Ding, Chuan & Yu, Bin & Yao, Baozhen, 2021. "Examining the spatial-temporal relationship between urban built environment and taxi ridership: Results of a semi-parametric GWPR model," Journal of Transport Geography, Elsevier, vol. 96(C).
    12. Yadi Zhu & Feng Chen & Zijia Wang & Jin Deng, 2019. "Spatio-temporal analysis of rail station ridership determinants in the built environment," Transportation, Springer, vol. 46(6), pages 2269-2289, December.
    13. Su, Shiliang & Zhao, Chong & Zhou, Hao & Li, Bozhao & Kang, Mengjun, 2022. "Unraveling the relative contribution of TOD structural factors to metro ridership: A novel localized modeling approach with implications on spatial planning," Journal of Transport Geography, Elsevier, vol. 100(C).
    14. Andersson, David Emanuel & Shyr, Oliver F. & Yang, Jimmy, 2021. "Neighbourhood effects on station-level transit use: Evidence from the Taipei metro," Journal of Transport Geography, Elsevier, vol. 94(C).
    15. Wu, Hao & Lee, Jinwoo (Brian) & Levinson, David, 2023. "The node-place model, accessibility, and station level transit ridership," Journal of Transport Geography, Elsevier, vol. 113(C).
    16. Karnberger, Stephan & Antoniou, Constantinos, 2020. "Network–wide prediction of public transportation ridership using spatio–temporal link–level information," Journal of Transport Geography, Elsevier, vol. 82(C).
    17. Weiss, Adam & Habib, Khandker Nurul, 2017. "Examining the difference between park and ride and kiss and ride station choices using a spatially weighted error correlation (SWEC) discrete choice model," Journal of Transport Geography, Elsevier, vol. 59(C), pages 111-119.
    18. Kepaptsoglou, Konstantinos & Stathopoulos, Antony & Karlaftis, Matthew G., 2017. "Ridership estimation of a new LRT system: Direct demand model approach," Journal of Transport Geography, Elsevier, vol. 58(C), pages 146-156.
    19. Kim, Suji & Lee, Sujin & Ko, Eunjeong & Jang, Kitae & Yeo, Jiho, 2021. "Changes in car and bus usage amid the COVID-19 pandemic: Relationship with land use and land price," Journal of Transport Geography, Elsevier, vol. 96(C).
    20. Mahmoud Owais & Abdou S. Ahmed & Ghada S. Moussa & Ahmed A. Khalil, 2020. "An Optimal Metro Design for Transit Networks in Existing Square Cities Based on Non-Demand Criterion," Sustainability, MDPI, vol. 12(22), pages 1-28, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1887-:d:1518579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.